
Assuring Fairness of Algorithmic Decision Making
Marc P. Hauer

Algorithm Accountability Lab
TU Kaiserslautern, Germany
OrcID: 0000-0002-1598-1812

Email: hauer@cs.uni-kl.de

Rasmus Adler
Fraunhofer IESE

Kaiserslautern, Germany
OrcID: 0000-0002-7482-7102

Email: Rasmus.Adler@iese.fraunhofer.de

Katharina Zweig
Algorithm Accountability Lab
TU Kaiserslautern, Germany
OrcID: 0000-0002-4294-9017

Email: zweig@cs.uni-kl.de

Abstract—Assuring fairness of an algorithmic decision making
(ADM) system is a challenging task involving different and
possibly conflicting views on fairness as expressed by multiple
fairness measures. We argue that a combination of the agile devel-
opment framework Acceptance Test-Driven Development (ATDD)
and the concept of Assurance Cases from safety engineering is
a pragmatic way to assure fairness levels that are adequate for
a predefined application. The approach supports examinations
by regulating bodies or related auditing processes by providing
a structured argument explaining the achieved level of fairness
and its sufficiency for the application.

I. INTRODUCTION

Algorithms are increasingly involved in systems used to
support decision making. Prominent application examples for
algorithmic decision making (ADM) [1] are supporting sen-
tencing in the criminal justice system [2], product recommen-
dation [3], medical diagnosis and treatment [4] or job applicant
pre-selection [5]. It is an extra-functional requirement that
ADM systems adhere to all legal standards regarding discrim-
ination. While there is no clear, quantifiable model of how
to measure the extent of discrimination from the legislator’s
perspective [6, p. 5], computer science has come up with about
20 fairness measures for this task [7].

In order to control for existing or upcoming discrimination,
e.g. because of data drift, it is not enough to assess the fairness
of a system once; instead, a continuous, digital assessment of
the fairness of the decisions is mandatory. In other words,
there needs to be a process that assures the fairness of the
decisions.

In traditionally programmed algorithms, this requires as a
first step that a group of people generates a comprehensible
common understanding of the term “fairness” and its spec-
ification, which is then implemented. The disadvantage of
this quantification process is that it is very hard to find a
formula that complies with the group’s intuition about fairness
in all possible cases or to even consider all possible cases.
In contrast to traditionally programmed algorithms, machine
learning offers the advantage that ‘fairness’ does not need to
be specified upfront, but can be demonstrated by a carefully
chosen set of examples in a training data set. The flip side
of the coin is that it is hard to assure whether the algorithm
has actually learned what fairness is. Formal proofs are not
applicable as a related formal specification is missing. Reviews
can also not be applied as AI-based systems are hardly
explainable or comprehensible. That means even if an AI

system made decisions that are deemed fair so far, without
being able to explain its behaviour, it cannot be assured that
it does the right thing for the right reasons. Therefore, the AI
system might make a wrong decision in future situations. In
spite of these challenges for assuring fairness, ADM systems
are increasingly used for making critical decisions, which leads
to the open problem of how to assure fairness. This is different
from assuring a discrimination-free ADM system, but rather
follows the idea of assuring protection from unreasonable risk,
which is common in safety engineering. An important basis
for assuring and arguing sufficient fairness is testing. This
holds true in particular if reviews and other traditional quality
assurance methods cannot be used when machine learning is
involved.

We thus propose to combine approaches from testing and
safety engineering for assuring fairness of AI-based decisions:
First, we suggest to use an Acceptance Test-Driven Devel-
opment (ATDD) approach, which aims at the derivation of
testable acceptance criteria for a given use case. Second, we
propose to develop an Assurance Case explaining which level
of fairness is achieved with the ATDD approach and why
this level is sufficient for the use case. ISO/IEC/IEEE 15026-
1:2019 defines an Assurance Case as a reasoned, auditable
artefact, which allows to validate a claim—in this case, e.g.,
that the system achieves a sufficient level of fairness in the
use case. It does so by structuring the underlying assumptions
and the necessary evidence for it in such a way that the
truthfulness of the claim can be logically induced from the
provided evidence.

We start with a short introduction of Acceptance Test-Driven
Development and Assurance Cases.

II. ATDD AND ASSURANCE CASES

This section gives a short introduction of the two main
frameworks proposed to assure fairness of a particular ADM
system in a particular use case, namely Acceptance Test-
Driven Development (ATDD) and Assurance Cases.

A. ATDD

ATDD is a framework that aims for deriving concrete,
unambiguous acceptance criteria by developing example situ-
ations that elaborate how a system should work. The examples
are specified by a team of stakeholders (usually at least
a business expert/customer representative/product owner, a



developer and a tester [8]), which work together to establish a
ubiquitous understanding of the wanted behavior of a system.
In the context of ATDD, various formats are proposed for
stakeholder meetings to jointly develop requirements, such as
a specification workshop [9], [10].

For larger systems, it might be sufficient to start producing
code for the first ATDD requirements, while producing further
examples in parallel. If a software product is supposed to
change over time, the examples can be extended or adjusted to
match up-to-date requirements. Eventually, multiple iterations
of meeting and building up examples might be necessary to
find an encompassing set of all necessary cases. This way, the
concept fits into common agile practices.

The collected example situations are then used to define the
acceptable behavior of the system in each of these situations
and to abstract from them so-called acceptance criteria, which
need to be observable.

Finally, these acceptance criteria are formulated as tests,
while prioritizing those that can be automated.

This basic framework of ATDD can be found in numerous
variations with different nuances or adaptations of techniques
and under multiple names, like Behavior-Driven Development
(BDD) [11] or Specification by Example [10]. An extensive
explanation of the various facets of the concept can be found
in [12].

B. Assurance Cases

An Assurance Case is a reasoned and compelling argument,
supported by a body of evidence, which states that a system,
service or organisation will operate as intended for a defined
application in a defined environment. They are heavily and
increasingly used for assuring safety of ADM systems like
autonomous vehicles. For instance, the safety standard UL
4600 refers to the development of an Assurance Case. A claim
for an AI-based perception system might be: ”The systems
detects pedestrians sufficiently reliable within its operational
design domain (ODD)”. The ODD specifies the operating
conditions under which a system or feature is designed to
function; for instance, geographical time-of-day, or weather
conditions. The claim itself is based on evidence. These
include results concerning simulation, evaluation of similarity
between reality and specification of validation data, evaluation
of run-time monitoring, and so on. The main task of the
Assurance Case is to justify why and under which assumptions
the evidence imply the claim. To this end, the main claim
is decomposed into sub-claims that are either also based
on the fulfillment of hierarchically structured sub-claims or
that can be directly induced from evidence. As illustrated in
Fig. 1a, each decomposition of a claim is made explicit by
an argument that explains the idea behind a decomposition.
Furthermore, all relevant assumptions for concluding that the
sub-claims imply the claims are made explicitly and connected
to the argument. To ease the understanding of an argument,
contextual information can be attached to it as well. There are
several notations available for modeling an Assurance Case
and the modeling features are sightly different. In this paper,

we do not stick to a specific notation and focus on the concept
of structured argumentation.

The hierarchically structured argumentation helps to:
1) manage complexity of the argumentation
2) foster the generation of meaningful evidence with a top-

down decomposition
3) avoid overstatements about the achieved level of fairness

(complementary bottom-up development)
4) to ensure completeness and correctness by enabling a

rigorous review or audit of each argument
In summary, an Assurance Case provides an argumentation

framework where the statement that the evidence supports
the claim under the given assumptions can be reasoned and
understood. In the next section, we will now integrate both
concepts to sketch how fairness of an ADM-system can be
assured.

III. FUSING ATDD WITH ASSURANCE CASES

We propose to combine Acceptance Test-Driven Develop-
ment (ATDD) with Assurance Case development to create a
process suitable for identifying and testing complex extra-
functional requirements on the example of fairness. While
ATDD aims for finding acceptance criteria based on specific
examples elaborated by a diverse group of stakeholders and to
test for them, an Assurance Case argues that the criteria found
with the help of ATDD are adequate and makes the otherwise
implicit assumptions visible. It provides a framework for
structured argumentation and it documents the results of dis-
cussions, whereby it reveals misconceptions and shortcomings.

Fairness as an extra-functional requirement first necessitates
a decision of what actually is the system that makes decisions.
We have argued elsewhere that it is not enough to focus on the
ADM system to understand whether fair decisions are being
made but that the final, social process in which the decision
making is embedded needs to be checked for fairness [13]. In
the following, we will first describe the necessary adaptation
of ATDD to fairness and then go on to the specifics of how
fairness requirements could be stated as an Assurance Case.

A. Adaptations of the ATDD process

We argued in the introduction that there is no way to find
a complete, consistent, quantified specification of fairness.
However, in a given situation, it is possible to evaluate the
list of all known fairness measures, select a subset of them
and discuss suitable thresholds to fulfill a specific goal. For
example, a company might want to use an ADM system
during a hiring process while reducing the risks for lawsuits.
Thus, the goal is not to make the ADM system free of
discrimination (which is impossible in principle) but only to
make the development and usage of the system robust enough
to reduce the risk to an acceptable level. Thus, during the
ATDD process, the expert groups need to find situations that
might be perceived as being unfair or discriminatory and
select the fairness measures to identify these situations by
setting a threshold after which the decision making is ruled as
problematic.



Phase 1: Composition of the Expert groups: To make this
procedure robust, a larger set of experts needs to be consid-
ered: In addition to the traditional stakeholders recommended
by the literature for requirements engineering, we propose to
consider legal experts, data scientists and ethicists as well
to make sure that all extra-functional requirements regarding
fairness have been identified. Moreover, in the context of
discrimination, it is especially important that members of all
respective groups are invited to collect example situations from
as many perspectives as possible.

In such an interdisciplinary setting, it is essential that
any current or future stakeholder can quickly understand the
intent of each example: There are multiple techniques how
to consistently write down examples. The best fitting method
needs to be derived by experience and to depend on the
specific project, though there are some techniques especially
popular, like the Gherkin Syntax [14], tabulated formats [14]
or keywords [15].

Phase 2&3: Identification of Acceptance Criteria and
Definition of Tests based on Fairness Measures: Once the
example situations are collected, they need to be grouped in a
way in which they can be identified using a fairness measure.
If there is a situation for which there is no fairness measure
or other means to identify it, this needs to be documented.
In general, the choice of concrete fairness measures is not
trivial and must be discussed on a case-by-case basis. Each
choice brings implications that the participants must be aware
of in order to make informed decisions which include all
perspectives from societal requirements to ethical judgement
and lawfulness.

With the fairness measures selected, acceptance criteria
need to be derived. The choice of the respective acceptance
criteria needs to be made such that they are satisfiable: Often,
different fairness measures are in conflict with each other, i.e.,
both cannot be optimized at the same time [16]. Similarly,
fairness and quality of decisions cannot always be optimized
simultaneously.

In any case, regarding fairness, it is always necessary to
adapt an acceptance criterion to the various ways in which
the data is sampled from the population, among others for the
following reasons:

1) In many cases, sensitive attributes create groups with
very unequal sizes. If the population is sampled with respect
to the ratios in which they belong to the different groups and
the fairness measure is averaged over all, the wrong decisions
about minorities count less than those of the majority group.
However, if the test data set is balanced, i.e., all groups are
tested by the same number of decisions, the fairness measure
is more balanced. However, in reality, more people of the
majority group are decided upon and thus, the fairness measure
does not meet reality. Therefore, there might be two thresholds,
one for the realistic distribution, and one for the balanced
sample distribution in order to assure fairness of the system.

2) Another aspect of input data is that there might be
correlations between sensitive data and data that is relevant
for the decision. In the job application data, gender might be

statistically related to success at school. In such a case, a test
searching for unfair treatment based on school grade may be
reasonable. Different thresholds for the whole data set and the
various conditions might be wanted in such a case.

Next to giving thresholds for single fairness measures,
another possibility is to create formulas that build a weighted
average over multiple fairness-measure values.

The test situations could also be based on input data sets
which are designed in a counter-factual approach [17]: There
are different concepts under the same name, but all have in
common that the system’s function under a designed data
set is defined. For example, in a job application system, it
might be required that the result of the decision making is not
changed by, e.g., the gender of a person. This can be tested
by exchanging the gender in real job applications and testing
the outcome with various fairness measures.

There might be even more ways in which fairness measures
can be used to assure fairness of a system: for the ATDD and
Assurance Case approach, it is only necessary that they can
be designed as tests.

The consensus achieved in the meetings should be docu-
mented. This includes in particular the arguments explaining
why the ADM is fair enough if it fulfills the acceptance crite-
ria. For this purpose and for demonstrating that the acceptance
criteria are actually fulfilled, we propose Assurance Cases, a
best practice which has already proven its value in the field
of safety.

The acceptance criteria can then be used as a basis for
developing tests that become part of the Assurance Case.

B. Development of Assurance Cases for fairness requirements

The Assurance Case is more than just a combination of
different fairness-related tests. It starts with the main-claim,
namely the statement that the system is “fair enough”. This
main-claim depends on the situation it is meant for. Thus,
the Assurance Case adds an argument to the main-claim that
describes the situation (context information) and that describes
the conditions under which it can be structured into sub-
claims. In Fig. 1a, as a running example, the situation is a
job-application system and the goal is for it to be fair enough to
minimize the risk of lawsuits. The context providing necessary
background information and the assumptions under which the
argument is valid are visualized as side nodes.

The sub-claims, on the one hand, contain the tests developed
in the ATDD approach. However, it also needs to be assured
(at evaluation time) that the conditions, under which the tests
were deemed to be correct, are still valid. For example, a sub-
claim to assure fairness of the entire system would need to
be that no new fairness measures to be considered have been
published. Secondly, that all known conflicts between fairness
measures are still the same.

Assurance Cases as means of external validation: To
assure that a system has a certain property, the way this is
evaluated (for example, by an Assurance Case) also needs to be
part of the assessment. In our case, for example, the selection
process of fairness measures to be considered, warrants some



(a) The main claim of the Assurance Case is divided into
multiple sub-claims

(b) Assurance Case path arguing over the selection of
fairness measures

Fig. 1: Example excerpts from an assurance case graph

quality as well. The conditions and assumptions under which
this selection took place (as part of phase 1 in the ATDD), can
also be described in the Assurance Case. For example, the first
two sub-claims in Fig. 1a make the selection process of the
considered fairness measures transparent and allow assurance
of its correct conductance. Fig. 1b shows a more detailed
picture of how the sub-claim that the selection process was
adhered to could be further divided into other sub-claims and
finally evidence to assure it.

IV. CONCLUSION AND FUTURE WORK

The proposed approach is not a deterministic process and
will thus not lead to a unique result. It can also not solve
the main and principle problem of how to define fairness
in a quantified and widely accepted manner. Nevertheless, it
describes a pragmatic approach to come to a well-documented
argument about when and under which assumptions a system
is “fair enough” to be used.

By modelling the argumentation about why the solutions
and the fulfillment of the chosen tests confirm the achievement
of the objectives as an Assurance Case, the rationales for
decisions can be documented and disclosed for an external
review or audit, for example, in a lawsuit.

By employing the approach before development, and by
automating the tests and documenting the results, this process
yields the potential to provide a long-term protection against
unwanted changes, e.g. through further training or errors when
changing the code.

Although the article explicitly focuses on fairness, the pro-
cess described can be applied to the testing of extra-functional
requirements like ethics in general. This makes sense wherever
clear legal or normative requirements still seem to be a long
way off. Whether the process is suitable for ethical testing
must be determined in industrial trials.

ACKNOWLEDGMENT

This work was supported by the German Federal Ministry of
Labour and Social Affairs (BMAS) in the project ExamAI—
KI Testing and Auditing (Funding code DKI.00.0002 3.20).
We thank our research partners from the Gesellschaft für
Informatik, the Stiftung Neue Verantwortung, and Prof. Dr.

Borges and his team from the University of Saarbrücken for
their helpful comments on an earlier version of this work.

REFERENCES

[1] N. Diakopoulos, “Accountability in algorithmic decision making,” Com-
munications of the ACM, vol. 59, no. 2, pp. 56–62, 2016.

[2] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias,”
Propublica, see https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing,, 2016.

[3] D. Mattioli, “On Orbitz, Mac users steered to pricier hotels,” Wall Street
Journal, vol. 23, p. 2012, 2012.

[4] W. R. Robinson, A. Renson, and A. I. Naimi, “Teaching yourself about
structural racism will improve your machine learning,” Biostatistics,
vol. 21, no. 2, pp. 339–344, 2020.

[5] J. Dastin, “Amazon scraps secret AI recruiting tool that showed bias
against women,” Reuters, 2018.

[6] S. Wachter, B. Mittelstadt, and C. Russell, “Why fairness cannot be
automated: Bridging the gap between eu non-discrimination law and
AI,” Available at SSRN, 2020.

[7] S. Verma and J. Rubin, “Fairness definitions explained,” in 2018
IEEE/ACM International Workshop on Software Fairness (FairWare).
IEEE, 2018, pp. 1–7.

[8] A. Cockburn, Agile software development: The cooperative game. Pear-
son Education, 2006.

[9] G. Adzic, Bridging the communication gap: specification by example
and agile acceptance testing. Neuri Limited, 2009.

[10] ——, “Specification by example,” Book your training with Dı́az &
Hilterscheid!, p. 20, 2011.

[11] C. Solis and X. Wang, “A study of the characteristics of behaviour driven
development,” in 2011 37th EUROMICRO Conference on Software
Engineering and Advanced Applications. IEEE, 2011, pp. 383–387.

[12] M. Gärtner, ATDD by example: a practical guide to acceptance test-
driven development. Addison-Wesley, 2012.

[13] K. A. Zweig, G. Wenzelburger, and T. D. Krafft, “On chances and
risks of security related algorithmic decision making systems,” European
Journal for Security Research, vol. 3, no. 2, pp. 181–203, 2018.

[14] E. C. dos Santos and P. Vilain, “Automated acceptance tests as software
requirements: An experiment to compare the applicability of fit tables
and gherkin language,” in International Conference on Agile Software
Development. Springer, 2018, pp. 104–119.

[15] R. Hametner, D. Winkler, and A. Zoitl, “Agile testing concepts based
on keyword-driven testing for industrial automation systems,” in IECON
2012-38th Annual Conference on IEEE Industrial Electronics Society.
IEEE, 2012, pp. 3727–3732.

[16] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger, “On
fairness and calibration,” Advances in Neural Information Processing
Systems, vol. 30, pp. 5680–5689, 2017.

[17] J. M. Nicklin, R. Greenbaum, L. A. McNall, R. Folger, and K. J.
Williams, “The importance of contextual variables when judging fair-
ness: An examination of counterfactual thoughts and fairness theory,”
Organizational Behavior and Human Decision Processes, vol. 114,
no. 2, pp. 127–141, 2011.


