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Abstract—[Context and motivation] Research on eliciting re-
quirements from a large number of online reviews using auto-
mated means has focused on functional aspects. Assuring the
quality of an app is vital for its success. This is why user
feedback concerning quality issues should be considered as well
[Question/problem] But to what extent do online reviews of apps
address quality characteristics? And how much potential is
there to extract such knowledge through automation? [Principal
ideas/results] By tagging online reviews, we found that users
mainly write about “usability” and “reliability”, but the majority
of statements are on a subcharacteristic level, most notably
regarding “operability”, “adaptability”, “fault tolerance”, and
“interoperability”. A set of 16 language patterns regarding “us-
ability” correctly identified 1,528 statements from a large dataset
far more efficiently than our manual analysis of a small subset.
[Contribution] We found that statements can especially be derived
from online reviews about qualities by which users are directly
affected, although with some ambiguity. Language patterns can
identify statements about qualities with high precision, though
the recall is modest at this time. Nevertheless, our results have
shown that online reviews are an unused Big Data source for
quality requirements.

Index: Terms—crowd based requirements engineering, require-
ments engineering, non-functional requirements, online user reviews,
quality characteristics, quality requirements.

I. INTRODUCTION

The requirements engineering (RE) community increasingly
sees user feedback on online platforms as a potential source
of user requirements. These platforms include app stores like
those of Samsung, BlackBerry [1], Google, and Apple [2]
[3] [4], social media such as Twitter [5], or issue tracking
systems [6]. Manual tagging studies have found online reviews
to provide useful information on product features when clas-
sified using content categories such as feature requests [3] [5]
and general criticism/praise [2] [7]. However, manual tagging
is a tedious and time-consuming task. Thus, approaches to
automating such analyses are being researched under the name
“Crowd-Based RE” [8]. One such method, which we will use
in this paper, employs language patterns involving regular
expressions to match statements with the specified pattern
through automation.

Typically, requirements are distinguished into three cate-
gories: functional requirements (FRs), constraints, and quality
requirements or non-functional requirements [9]. Concerning
the first category, existing FRs can be refined by analyzing
online reviews for criticism and praise, while new FRs can
be derived from feature requests [3]. Requirements of the
second category, constraints, affect and limit projects and
software solutions, and are often beyond the user’s awareness
or explanation capabilities. For example, a user will usually
not know about the availability of resources such as budget
and manpower, and will not always understand how laws and
standards affect software. Hence, there is little chance that
user feedback provides useful information on constraints if
these are addressed at all. Yet user feedback on the third
category, quality requirements, may be of interest. Since users
are directly affected by quality characteristics such as usability,
performance efficiency, and security, it is probable that online
reviews contain statements about product qualities. However,
we are aware of only one study that has classified statements
according to quality aspects, and this research by Lu and
Liang was published nearly simultaneously to this paper [10].
Although their work suggests that quality aspects are indeed
addressed by users, it does not systematically address the
question to what extent each quality characteristic is addressed.

Research on quality requirements is highly relevant, as
they are a crucial aspect of software product development.
These requirements are the architectural drivers [11], and
not adequately addressing them will likely lead to project
failure and high rework cost [12] (see Section V). They also
increasingly form a unique selling proposition, especially for
consumer products. But getting a complete and correct set of
quality requirements is difficult [13] [14]. Some studies have
considered bug reports (e.g., [5] [6] [7]), but they identified
feature shortcomings at the functional level, and at best they
discovered keywords such as “crash” to obtain an indication
of poor reliability.

Thus, in this research, we set out to determine whether user
feedback can also be a useful source of statements to support



the elicitation or prioritization of quality requirements. We
formulated the following research questions:

RQ1: What quality aspects of software products are
raised by users in app reviews?
RQ2: How should language patterns be defined so that
quality aspects of software products formulated by users
can be automatically detected or extracted?

To answer these questions, we first conducted a study where
we manually tagged online reviews for statements about
product qualities, which is presented in Section II. In a second
study, we performed an automated analysis of online reviews,
which is presented in Section III. We discuss potential threats
to validity in Section IV. Section V presents related work, and
Section VI our conclusions.

II. STUDY I: INVESTIGATION OF ONLINE REVIEWS

A. Method

In order to understand what users say about the quality of
apps, we set out to identify statements on product quality by
tagging them through content analysis [15].

Step 1: Select and obtain online reviews. To create a dataset
with online user reviews, we looked for apps in the five
app categories that Pagano and Maalej identified as garnering
the most online reviews, which are usually apps with which
users interact and build a relationship with [2]. We added
the category “Smart Products”, for which the owner of a
“smart” physical product can download a free app to unlock
further functionalities. In each product category, we selected
one paid app and a free app, as online reviews of free and
paid apps have also been found to differ [2]. We searched
for online reviews to the most popular apps available on the
international (English-language) version of the Apple App
Store, the Google Play Store, and Amazon.com. First, we
selected only those apps that are available in all three app
stores. As the secondary criterion, each app should have at
least a 5% share of reviews for each star on the 5-star rating
scale. We then randomly selected one free and one paid
application per category. This resulted in our test set from
36 sources (6 categories×2 apps×3 app stores), as shown
in Table I. The average rating for all apps was 3.5 stars. The
online reviews of these products were then crawled using a
customized text mining tool.

Step 2: Structure online reviews. We took a stratified random
sample from the dataset by randomly selecting two reviews
for each rating from the 5-star rating scale, resulting in ten
reviews per product per store, or 360 reviews in total. For
Cleverbot on Amazon, our dataset included only one 4-star
review, which was compensated by adding a randomly selected
review from the most frequent adjacent rating, which was
a 5-star review. Using OpenNLP (http://opennlp.apache.org),
we then split these reviews into separate sentences, which
we call statements, for a total of 1,385 statements. The
statements were exported to a CSV file, which we loaded into
a customized web-based tagging tool to enable the annotators
to tag statements independently of one another.

TABLE I
LIST OF APPS IN OUR DATASET WITH THE NUMBER OF REVIEWS CRAWLED

FROM THREE APP STORES. AN ASTERISK (∗) INDICATES THAT THE APP
STORE LIMITED THE NUMBER OF RETRIEVABLE REVIEWS (AM =

AMAZON, AP = APPLE APP STORE, GO = GOOGLE PLAY).

Category App (Price) No. crawled reviews
Am Ap Go

Entertainment
Disney Movies Anywhere 120 2,359 4,217
Cleverbot ($0.99) 59 1,530 800

Productivity
OneNote 422 6,722 2,959
Tiny Scan Pro ($4.99) 432 2,140 601

Social Media
TweetCaster 1,200 7,758 4,050∗

TweetCaster Pro ($4.00) 857 724 4,023∗

Messaging
Viber 889 67,671 4,306∗

IM+ Pro ($2.99) 132 193 2,215

Games
PAC-MAN 256 – Endless
Arcade

698 2,261 4,402∗

Maze Sonic & SEGA
All Stars Racing ($2.99)

302 3,548 420

Smart Products
Philips Hue 69 2,469 601
August Smart Lock 344 290 283

Total 5,602 97,715 28,877

Step 3: Define tagging categories and a tagging schema.
Before the annotators could categorize statements by assigning
“tags” in the tagging tool, we had to determine these tags.
As we are interested in statements about product qualities,
we decided to use the structure of the quality model for
“software product quality” proposed in the ISO 25010 standard
[16], a commonly used quality standard. This quality model
contains eight software product quality characteristics, which
became our “main tag”. These are in turn subdivided into 31
subcharacteristics, which became our “sub tags”. For example,
the characteristic “compatibility” has the two subcharacteris-
tics “co-existence” and “interoperability”. To the “main tag”,
we added the option “none” to tag statements that are not
about quality or which are too unclear. To get a common
understanding of the meaning of the tags, we performed two
test runs and discussed the process and the results, based on
which we iteratively composed a tagging schema with the
definitions from ISO 25010, along with examples and signal
words. The annotators were additionally trained on the ISO
25010 characteristics and subcharacteristics.

Step 4: Perform tagging. The tagging was performed indi-
vidually by five annotators, consisting of two researchers in
computer science and psychology, and three social informatics
students. After reading each statement, we assigned the best
fitting main tag. The sub tag was optional, and was only
assigned if the statement could clearly be assigned to a
particular subcharacteristic. For example, the statement “Very
ugly emoticons!!!” was assigned “usability” as a main tag,
and “user interface aesthetics” as a sub tag. The statement
“Doesn’t even load for me anymore.” was assigned only the
main tag “reliability”, because it is unclear what the cause
of the problem is. Additionally, if a statement could clearly
be assigned to more than one characteristic, the annotators
were allowed to provide more than one tag, along with their



associated sub tags. Cases where this happened included
statements that had independent clauses, such as two sentences
that are joined by the word “but” or “and”, that lacked
punctuation so that the sentence splitter failed to split them, or
that simply covered multiple aspects, e.g., “Nice interface and
loads quickly.” was assigned “usability” with the subtag “user
interface aesthetics”, and “performance” – “time behavior”.

Step 5: Reconcile and process tagging results. After com-
pleting the tagging of the entire sample, one annotator exported
the tagged statements to an Excel file. A statement was readily
assigned a tag if at least three of five annotators agreed,
or if the two researchers assigned the same tag. Statements
that could not be unambiguously assigned one main tag were
reconciled by the two researchers. They analyzed each of these
statements, considered the tags assigned, and together made
a decision on the definite main tag and the appropriate sub
tag(s). Based on this process, we built up our ground truth.

Step 6: Analyze data. We analyzed the data resulting from
the content analysis by calculating sums and frequencies, mak-
ing comparisons per app (between app stores), per grouping
(between categories), by price (paid vs. free), and by rating (1
to 5 stars). The results are presented in the next section.

B. Results

We analyzed 360 reviews consisting of 1.368 statements,
which took each annotator approximately 10 hours to tag.
A total of 163 (45.3%) reviews were tagged as containing
information on quality characteristics (see Table II). They
were made of 263 statements (19.0% of all statements), with
two statements per review on average (i.e., the title and one
sentence from the review text), and ranging from only a title
to a review with a title and three sentences. Most statements
were tagged with one characteristic and one subcharacteristic;
32 reviews (36 statements) were assigned two characteristics, 4
reviews (4 statements) were assigned three characteristics, and
9 reviews (9 statements) were assigned two subcharacteristics
within the same characteristic.

1) Frequency of characteristics: In Table II, we sorted
the characteristics and their subcharacteristics by their fre-
quency. Users reported most frequently on three characteris-
tics, with “usability” being the most prevalent. In turn, the
subcharacteristic “operability” was discussed most often by
users, in 32 (56.1%) of the 57 reviews on “usability”. We
additionally identified 15 statements (S) in 14 reviews (R)1

on “usability” in general (e.g., “the most intuitive app”),
while zero statements addressed the “usability” subcharac-
teristics “appropriate recognizability”, “user error protection”
or “accessibility”. “Reliability” was identified as the second
most frequent characteristic. Users predominantly addressed
issues regarding “fault tolerance” (32 R; 60.4% of all re-
views on reliability), but “maturity” was never addressed.
Interestingly, for every product, at least one review addressed
“reliability”, though there are only 9 reviews that regard the

1In the following paragraphs we will report data about both the number and
the percentage of reviews and statements. For the sake of brevity, we denote
reviews by R, and statements by S.

two most frequent characteristics “usability” and “reliability”.
Interestingly, the third most frequently found characteristic
was “portability”, with the majority of the reviews (38 R;
79.2%) addressing “adaptability”, which gave an idea about
the environment (e.g., operating systems, Internet browsers)
in which users used or would like to use the app. We
concluded that we could not distinguish well between the
subcharacteristics of “security”, because in most cases these
subcharacteristics already determine the cause or culprit. As
a result, without understanding the background of the issue,
one would have to guess which subcharacteristic could apply.
For example, the statement “Can’t even get in” may suggest
either an “authentication” or “authorization” issue. Moreover,
we did not identify any statement about the characteristic
“maintainability” in our test set.

2) Comparison of app stores: Amazon provided the
longest reviews with 480 statements, of which 20.4% (R:
62; S: 98) contained statements on quality aspects. Apple
had slightly shorter reviews, resulting in 465 statements,
of which 25.8% (R: 66; S: 120) were on quality aspects,
though the reviews that address quality aspects were longer
on average. Google had the shortest reviews, amounting to
a total of 413 statements, of which only 10.9% (R: 35; S:
45) contained quality-related statements (see also Table II).
Interestingly though, the reviews from Google provided a
nearly even distribution of the reviews across characteristics
(avg. 5, median 7, min. 3, max. 11). We also found differences
in the emphasis on quality characteristics. The most frequently
addressed quality with Apple was “reliability” (R: 30; S: 45)
followed by “usability” (R: 28; S: 28) and “portability” (R:
20; S: 29); the reviews on Amazon focused on “usability” (R:
29; S: 36) and “portability” (R: 21; S: 25), and those from
Google mainly discussed “reliability” (R: 11; S: 15), followed
by “usability” (R: 7; S: 9), “portability” (R: 7; S: 8), and
“compatibility” (R:7; S:7).

3) Comparison of apps: Table III shows that OneNote
received a fairly average total number of statements (119
from all three app stores together), but garnered the most
quality-related reviews with 80.0% (R:24; S:47/119), followed
by TweetCaster with 56.7% (R:17; S:20/128) and IM+ Pro
with 53.3% (R:16; S:27/129). August Smart Lock received the
longest reviews overall with 209 statements, but only 8.6% of
these (R:13; S:18/209) were about quality. CleverBot had the
lowest share of quality-related statements with 3.1% (R: 3;
S:3/97) (see Table III). The three most frequently identified
quality characteristics overall are usually also the most often
found quality characteristics per app. One exception is IM+
Pro, for which “compatibility” was mentioned most frequently
(R:8), as users reported on the advantage of interoperability
with many instant messaging services, or some unsuccessful
connections between them.

4) Comparison of app categories: The product category
“productivity” (see Table III) had the highest share of the
quality-related reviews and statements (R: 39; S: 65/202,
32.2%), by which it accounts for 24.0% of all reviews and
25.0% of statements that are quality-related. The lowest-



TABLE II
NUMBER OF QUALITY-RELATED REVIEWS AND STATEMENTS PER QUALITY CHARACTERISTIC IN TOTAL AND BY APP STORE (AM = AMAZON, AP =

APPLE APP STORE, GO = GOOGLE PLAY). TOTALS DIFFER FROM SUMMED VALUES AS MULTIPLE TAGS COULD BE ASSIGNED TO ONE REVIEW.

Characteristics
and subcharacteristics

Total
Reviews (R)

Total
Statements (S) Am Ap Go

Usability 57 (35.0%) 75 (28.5%) 29; 38 21; 28 7; 9
Operability 32 (19.6%) 42 (16.0%) 15; 22 15; 18 2; 2
UI Aesthetics 13 (7.9%) 14 (5.3%) 2; 2 9; 10 2; 2
Learnability 7 (4.3%) 8 (3.0%) 7; 8 0; 0 0; 0
General 14 (8.6%) 15 (5.7%) 9; 9 1; 1 4; 5

Reliability 53 (20.2%) 76 (28.9%) 12; 16 30; 45 11; 15
Fault tolerance 32 (19.6%) 41 (15.6%) 8; 9 18; 24 6; 8
Recoverability 7 (4.3%) 8 (3.0%) 1; 1 4; 4 2; 3
Availability 4 (2.5%) 5 (1.9%) 0; 0 3; 4 1;1
General 22 (13.5%) 50 (19.0%) 4; 7 15; 17 3; 3

Portability 48 (29.4%) 60 (22.8%) 21; 24 20; 29 7; 7
Adaptability 38 (23.3%) 38 (14.4%) 14; 14 19; 19 5; 5
Installability 10 (6.1%) 10 (3.8%) 7; 7 3; 3 0; 0
Replaceability 2 (1.2%) 3 (1.1%) 0; 0 2; 3 0; 0
General 9 (5.5%) 9 (3.4%) 3; 3 4; 4 2; 2

Compatibility 27 (16.6%) 31 (11.8%) 11; 11 9; 13 7; 9
Interoperability 22 (13.5%) 26 (9.9%) 10; 10 8; 12 4; 4
Co-existence 1 (0.6%) 1 (0.4%) 0; 0 0; 0 1; 1
General 4 (2.5%) 4 (1.5%) 1; 1 1; 1 2; 2

Performance efficiency 21 (12.9%) 30 (11.4%) 7; 10 9; 14 5; 6
Time behavior 14 (8.6%) 17 (6.5%) 4; 4 5; 7 5; 6
Resource utilization 4 (2.5%) 8 (3.0%) 2; 5 2; 3 0; 0
General 5 (3.1%) 5 (1.9%) 1; 1 4; 4 0; 0

Security 15 (9.2%) 19 (7.2%) 5; 5 5; 6 5; 8
Functional suitability 14 (8.6%) 16 (6.1%) 1; 1 10; 12 3; 3

Functional correctness 9 (5.5%) 9 (3.4%) 1; 1 6; 6 2; 2
General 6 (3.7%) 7 (2.7%) 0; 0 5; 6 1; 1

Total 163 (100.0%) 263 (100.0%) 62; 98 66; 120 35; 45

scoring category was “entertainment” (R: 17; S: 27/181,
14.9%). Although in this category, Disney Movies Anywhere
received a higher share of matched statements, CleverBot
provided very few matches, causing a low overall score for this
category. Paid apps received longer reviews on average, but
fewer reviews and fewer statements about paid apps mentioned
quality aspects (R: 61, 37.0%; S: 115/724, 15.9%) compared
to free apps (R: 102, 63.0%; S: 145/644; 22.5%). The distri-
bution of reviews and statements across subcharacteristics was
similar to the patterns observed across the characteristics. The
exception was that free apps had a larger relative percentage
of reviews and statements on “security” (R: 7.9% vs. 1.2%;
S: 7.9% vs. 3.7%), whereas paid apps had a higher share
of statements (but not reviews) on “performance efficiency”
(13.1% vs. 6.7%) and “functional suitability” (8.0% vs. 2.8%).

5) Comparison of ratings: As illustrated by Table IV, there
were more quality-related reviews with a negative rating (1
and 2 stars) than with a positive rating (4 and 5 stars): 120 vs.
62. With respect to “reliability”, reports on the app crashing
resulted in low ratings (1 or 2 stars). Reviews regarding
“usability” could provide both positive feedback (e.g., “easy
to set up lists”) and negative feedback (e.g., “it is difficult to
navigate”). It seems that people are more inclined to writing

a review when there is an issue with the quality of an app.

C. Discussion

1) Software quality subcharacteristics identified in user
feedback: In this study, we were able to identify which
quality aspects users most often mention in online reviews
about apps. Although the statements of users often contained
ambiguities, which made the tagging results not as clear-cut,
we did find quite a consistent pattern, namely that particu-
lar product quality characteristics and their subcharacteristics
were reported more frequently than others. This pattern was
consistent across apps, app categories, app stores, and price
groups. “Reliability” and “usability” were found most often,
and they together accounted for over half of all reviews
and statements on quality, though users rarely address both
characteristics in one review. “Maintainability” received zero
statements. Thus, it appears that users will primarily report on
runtime qualities by which they are directly affected, either
positively or negatively. On the other hand, we found that they
do not, and in many cases cannot, contribute useful input on
the maintainability of a product. This means that users have
gathered expertise on particular app qualities because of their
personal experience, providing reliable firsthand reports from



TABLE III
NUMBER OF QUALITY-RELATED REVIEWS FOR APPS VS. QUALITY CHARACTERISTICS.
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Entertainment
Cleverbot 0 1 0 0 0 0 2 3

DisneyMovies 3 3 9 0 2 1 1 19

Games
PacMan 2 6 1 0 2 1 0 12

SonicSega 3 4 8 1 1 1 2 20

Messaging IM+Pro 3 2 3 8 4 1 2 23
Viber 3 4 2 2 2 2 1 16

Productivity OneNote 9 6 6 6 2 6 1 36
TinyScanner 6 7 3 0 3 0 4 23

Smart
Products

PhilipsHue 7 5 8 3 0 0 1 24
SmartLock 7 3 5 1 4 2 0 22

Social Media
TweetCaster 6 8 2 2 0 1 0 19

TweetCasterPro 8 4 1 4 1 0 0 18
Total 57 53 48 27 21 15 14

using the app. However, it also means that user feedback will
not provide information on (sub)characteristics that are not as
visible to the users, so that mining online reviews may be less
suited for helping to determine how well those quality aspects
are being fulfilled.

TABLE IV
NUMBER OF QUALITY-RELATED REVIEWS FOR RATINGS VS. QUALITY.

CHARACTERISTICS.
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1 10 18 13 4 4 2 3 54

2 17 16 9 7 6 5 6 66

3 11 13 12 7 5 3 2 53

4 11 3 9 4 5 4 2 38

5 8 3 5 5 1 1 1 24

Every characteristic also had at least one subcharacteristic
that was either never mentioned, or in the case of “com-
patibility” and “portability”, was mentioned in just one and
two reviews, respectively. This pattern could be consistently
observed across all apps considered, which shows that users
generally report on particular quality aspects more than on
others. Moreover, it means that statements are often best
considered on a subcharacteristic level, though users do not
address all subcharacteristics. Although we only assigned a
subcharacteristic if a statement could be clearly assigned to
one, every characteristic had one predominant subcharacter-
istic that accounted for over half the tags of that characteristic.
The four most common ones we found are “operability”,
“adaptability”, “fault tolerance” and “interoperability”. The

only exceptions to this finding are: “maintainability” was never
addressed, and it was not possible to assign subcharacteristics
of “security” without knowing, for example, what caused a
particular login problem.

2) What we can learn from user feedback: “Usability”
is the only quality characteristic that users report on both
positively and negatively in nearly equal numbers; the
difference in the percentage of the reviews rating 1–2 vs. 4–5
stars is approx. 10%. Reports on “operability” either confirm
or deny ease of use, whereas a lack of such statements might
indicate improvement potential. We also found indications that
online reviews may inform among others UX designers about
the elements that can spoil a positive user experience through
statements such as “way to export documents isn’t terribly
obvious”, or “Would you please provide us with the ability to
have the links inside of the tweet highlighted”.

Statements about “reliability” and its prevalent subcharac-
teristic “fault tolerance” are almost exclusively negative and
indicative of an error occurring. Such reviews seem to be
a good source of test cases (e.g., by providing attributes of
the testing environment) and bug reports, conform research
on using bug reports for RE [6]. Most apps appear to have
at least one situation in which faults are handled improperly
(e.g., crashing without informing the user of what happened;
not supporting the user in finding a workaround or in reporting
bugs). These kinds of reviews should be monitored with care,
as they seem to have the greatest overall influence on an
app’s rating, followed by reviews on “performance efficiency”.
The latter can help to propose new or refine existing quality
requirements on the one hand, and, on the other hand, help to
create acceptance test cases for functions that are expected to
finish faster or smoother. This seems to be especially important
for apps that users expect to work efficiently, such as instant
messengers or games. Statements on “adaptability” could



be useful for deriving the environments (operating systems,
devices) in which the app is used or in which users would
like to use them. “Interoperability” provides insights into the
need for or the ability to transmit data or commands across
devices, or to identify which services should cooperate with
one another. There is a similar potential for formulating or
improving quality requirements for other (sub)characteristics,
although the information available from user feedback in
online reviews will be more limited.

Our results are in line with the findings of Pagano and
Maalej [2], whose statistical analyses of English-language app
store reviews revealed that users provide more RE-relevant
user feedback for apps they interact and build a form of
relationship with. The deviating pattern of comments on Cle-
verbot reveals that the awkward conversations with this AI bot
prevented users from building up such a relationship. Pagano
and Maalej also found differences in the user feedback to free
vs. paid apps, as well as differences related to how many stars
the user rated the app. We only found an effect of rating on the
characteristic “reliability”, which was reported considerably
more often in reviews with a lower rating. Quality aspects were
reported less often in reviews about paid apps, even though
these reviews were longer on average, but the frequency with
which characteristics were addressed was similar.

3) Beyond software quality: We identified one review that
addressed the experience with the support provided to the
product, rather than with the product quality itself. This finding
creates a new research direction. It would be valuable to
investigate what requirements users of software products have
towards the services that are offered, such as troubleshooting
with the help of customer support, and how this affects the
perceived quality of the product.

III. STUDY II: AUTOMATED EXTRACTION OF
QUALITY-RELATED STATEMENTS

A. Method

The goal of Study II was to thoroughly analyze quality-
related user feedback to discover language patterns and de-
termine if they can be identified through automated means
(RQ2), comparable to the way Panichella et al. [4] identified
and implemented 246 recurring linguistic patterns for feature
requests. In our study, we focused on statements about “usabil-
ity” – the characteristic we identified as the most frequently
addressed in the online reviews in Study I. Our research
procedure was executed according to the following steps:

Step 1: Identify linguistic structures and define language
patterns. We assessed and compared the 75 statements from
the 57 reviews that were tagged as “usability” in Study I,
to identify signal words and recurring expressions by which
users describe this characteristic. For statements using distinct
words, or for statements with similar structures, we defined
language patterns. The notation of these language patterns is
an extension of typical regular expressions, in which we group
categories of keywords into word lists (e.g., “EN Persons”
represents any of the words “I”, “you”, “we”, “us”, . . . ). A
word list name acts as a placeholder. Our analysis tool cycles

through all the words from a word list to find a matching
pattern in the statements in our data.

For example, our results included such statements as:
“The app is easy to navigate.”, and “This thing works like
champ, easy to customize and configure.”. These are two
statements that both share the words “easy to”, followed
by a verb. Based on this, the following language pattern
on “operability” could be created in the form of a regular
expression: “(?<!EN Negations )(that |)(easy )(to |)(navigate
|customize)” (a simplified version of language pattern ID 3).
Our language patterns categorize statements along two dimen-
sions. The first dimension concerns the type of statement,
i.e., whether a statement is positive, negative, or requesting.
The second dimension determines the requirement type, i.e.,
whether the statement addresses a functional or quality aspect
(in this study, “usability” and its subcharacteristics). To ensure
a clear distinction between positive and negative statements,
the patterns often include operators that forbid negations
such as “not”. In the case of the above language pattern,
this prevents from matching a negative statement like “not
(that) easy to navigate”. Then, the pattern was expanded with
additional keywords from other reviews about “operability” so
that it can match among others “simple to use”.

Step 2: Evaluate the language pattern syntax. Using an
online regular expression tester, we determined improvements
to the language patterns based on the following rules:

• a pattern is incorrectly constructed if it does not match
any statement;

• a pattern may be too restrictive if it matches one or a few
statements;

• a pattern is too general if it matches statements not
belonging to the (sub)characteristic it should identify;

• a pattern is too inaccurate if it cannot correctly differen-
tiate between requirement types.

Since the regular expression tester we used did not support
word lists, for the testing we replaced the placeholders with all
words in the corresponding word lists, separated by the“OR”
operator.

Step 3: Refine the patterns. To test the language patterns,
we performed a tool-based pattern matching using the test
set of 360 reviews from Study I. Based on this, we were
able to measure the precision and recall on this test set.
After evaluating the language patterns, we improved them in
three ways: we resolved (syntax) errors, identified ways to
combine similar patterns, and created positive expressions as
inverse patterns to negative ones, and vice versa. For exam-
ple, “A very intuitive, helpful app” and “Not very intuitive”
can be recognized by a variant of the language pattern ID
6, “(?i)(?<!EN Negation )(EN Emphasis )(intuitive)”, if the
operator “(?<!EN Negation )” is changed to “(EN Negation
)”, making it possible to match the negation.

The process of evaluating and refining the language pat-
terns was repeated until they matched (only) the statements
tagged as “usability” in our test set (i.e., correct syntax, high
precision and high recall). We calculated precision as “true
positives/matched statements”, where the matched statements



represented the total of all true positives (TPs) and false
positives (FPs).

Step 4: Evaluate the complete dataset. The resulting pat-
terns were used to evaluate the complete dataset of 132,194
statements from our full dataset (see Table I). We then as-
sessed the results to find FPs (wrong subcharacteristic, wrong
requirement type, or both). The language patterns with a high
FP rate (>50%) were refined in further iterations (if possible)
and tested on the complete dataset again. In the results, we
compared the automated results to the tagging results on
a per-statement level, as language patterns match individual
statements rather than reviews.

B. Results

We could define a language pattern for 39 (52.0%) of
the statements that were tagged as relating to “usability” in
Study I; 23 (43.4%) about “operability”, 7 (13.2%) about
“UI aesthetics”, 5 (9.4%) about “learnability”, 3 (5.7%) about
both “operability” and “learnability”, and one (1.9%) about
both “operability” and “UI aesthetics”. Surprisingly, the 15
statements on general “usability” did not provide any use-
ful linguistic pattern. The commonalities in the structure of
the statements allowed us to cover them using 16 language
patterns (see Table V), of which 14 matched statements on
“operability” (patterns 1-9, 11, 13-15), one on “learnability”
(pattern 10), and one on “UI aesthetics” (pattern 12).

The remaining 36 (48.0%) statements did not provide a
pattern for which a language pattern could be constructed,
including all 15 statements (5.0%) on general “usability”,
13 about “operability”, and 6 about “UI aesthetics”. These
included vaguely formulated or nested statements, such as
“One thing that bugs me right away, is all your blocked users
show up right in your profile”. Other statements provided
too little informational content to reliably find statements on
“usability” with a language pattern. For example, the pattern
in the statement “What a terrible game, look, layout.” is “what
a terrible...”, which would uncover negative statements about
many aspects that are not about “usability”. Alternatively, it
would be possible to search for keywords like “layout”, but
this, in turn, makes the requirement type classification difficult.

Before we made improvements to our language patterns,
we tested them against our complete dataset. This resulted in
35,940 matched statements (see Table V). However, the lan-
guage pattern 9 matched 34,286 (95.4%) of these statements.
It was found to be erroneous and did not allow us to deal
with variations in the syntax well, therefore we excluded it
from further iterations. After refining the other 15 language
patterns, they matched 1,654 statements, which we could then
assess on their correctness. From these results, we identified
1,528 (92.4%) TPs, and 126 (7.6%) FPs. The TPs matched
1,519 statements (99.4%) about “operability”, 7 (0.5%) about
“learnability”, and 2 (0.1%) about “UI aesthetics”. This shows
that our language patterns found a larger share of statements
on “operability” than we did in our tagged set.

Upon analysis of the FPs, we found that 87 (69.0%) of
the 126 statements marked as a FP did address “usabil-

ity”, but that they were either negative statements about
“usability” while the language pattern intended to find pos-
itive statements, or vice versa. For example, the language
pattern “(?i)(?<!EN Negations )(EN Emphasis )(intuitive)”
(language pattern ID 6) should find positive statements, but
did not exclude “. . . settings does not seem very intuitive”).
Only 27 (21.4%) of the FPs did not match the characteristic
“usability” or a subcharacteristic.

TABLE V
RESULTS FROM OUR ANALYSIS OF THE 16 LANGUAGE PATTERNS OVER

THE COMPLETE DATASET.

Language
Pattern ID

Matched
Statements

TPs FPs Precision

1 17 13 4 76.5%
2 3 2 1 66.6%
3 1,320 1,301 19 98.6%
4 31 31 0 100.0%
5 55 54 1 98.2%
6 20 14 6 80.0%
7 146 61 85 42.5%
8 10 10 0 100.0%
9 34,268∗ – – –
10 14 7 7 50.00%
11 1 1 0 100.0%
12 2 2 0 100.0%
13 4 4 0 100.0%
14 1 1 0 100.0%
15 20 17 3 85.00%
16 10 10 0 100.0%

Total 1,654 1,528 126 92.4%

∗)The pattern was too general and was omitted from
further iterations and total counts.

C. Discussion

1) Linguistic structure of statements: In this study, we
assessed the statements tagged as “usability” and found that
about half the statements could be matched through lan-
guage patterns (RQ2). For example, many users describe
their experience with the app’s operability trough variations
of word combinations including “(not) easy to . . . ”, “. . . (not)
very intuitive / user-friendly”, and “would like to be able
to . . . ”. However, the patterns shall be carefully constructed.
The first two given examples show a clear valence (either
positive or negative), while the third shows a request for
quality. This means that statements with a negative valence
should require the combination of a negation and a positive
word (e.g., “not easy”), or the use of a negative word (e.g.,
“hard”), while the same pattern could forbid those words to
find statements with a positive valence. Making a distinction
in valence is important when using the statements to elicit
requirements because finding either many positive or many
negative statements about “usability” have different implica-
tions for defining requirements. Furthermore, identification of
requesting statements about qualities (i.e., “quality requests”)
might help to improve the software product by fixing some
inadequacies or introducing new qualities. Manual extraction



of quality-related statements from our full dataset would be
very time-consuming. Instead, it was possible to construct
language patterns to find statements following particular lan-
guage patterns in a larger dataset, as detailed in Section III-A.

2) Language pattern derivation: The process of formu-
lating language patterns required several iterations, often
because even small syntax errors can greatly compromise
results. Negatively phrased statements were sometimes more
difficult to identify since in many cases adding a negating
word is not enough. Nevertheless, the experience with lan-
guage patterns shows promising results. Especially because
patterns for positive statements can be easily adapted to find
negative statements and vice versa. Instead of using language
patterns, it is possible to query for particular keywords (such
as the combination “easy to use”), which could reveal many
relevant statements. However, such query would not allow
automatically determining the statement type, e.g., if it is
positive (e.g., “very easy to use”), negative (e.g., “not easy
to use”) or requesting (e.g., “please make it more easy
to use”). For instance, the keyword-based classification by
Yang and Liang did not distinguish between the quality
(sub)characteristics [17]. Thus, we argue that more intricate
patterns are needed.

3) Language pattern precision: The results contained many
TPs, though we also identified several FPs, many of which
did address “usability” but had the wrong valence or subchar-
acteristic. Moreover, several matched statements contained
ambiguities (e.g., vague formulations), meaning we could not
always identify the result as a TP with certainty. When in
doubt, we classified such a statement as a FP. We found
that the precision of our language patterns is higher than the
results of comparable studies that used keyword-based ap-
proaches (e.g., [17]) and vector-based classification techniques
(e.g., [10]). This means that when performing an analysis with
these language patterns, nearly all results are appropriate.

Despite the high precision, we also recognized that com-
pared to the manual tagging, the 16 language patterns
covered only a limited portion of all relevant statements
on “usability”. In Study I (see Section II), we found 75
statements on “usability” from 1,368 statements. Assuming
that the proportion of statements will scale, we can infer that
our full dataset (consisting of 384,510 statements) theoretically
contains 20,518 statements on “usability”, of which we cov-
ered only 1,654, or 8.1%, but using only a set of 16 language
patterns. Such low recall can be explained by the focus of our
study. We limited ourselves only to create language patterns
that matched the tagged statements to investigate whether the
tagging results could contribute to finding other statements on
“usability”. This way we could show that it is possible to find
other statements with exactly those patterns.

There are several ways to increase recall, though some of
these approaches are less systematic. One could logically the-
orize about similar patterns or wordings not found in the data.
This could greatly improve the effectiveness of the existing
language patterns. Another possibility is to construct additional
language patterns. However, the frequency of patterns follows

a power law distribution, as could also be seen with our results;
a few language patterns are able to identify many statements
that follow a commonly found pattern, while the majority of
patterns are found less often. Additional language patterns will
likely cover fewer statements, or may become very complex.
Especially nested statements, in which a word combination
about “usability” is separated by words or subordinate clauses,
are difficult to identify in this way. Moreover, we could not
create a language pattern for all statements tagged. Another
approach, which would be more systematic, is by taking a
top-down approach, where possible keywords and expressions
relating “usability” would be elicited in an expert workshop.
A query based on the workshops results could give rise to
identifying new patterns that make use of such keywords
and expressions. However, the ambiguous formulations of
users will likely always prevent automation from finding some
statements that human annotators would classify as “usability”.

IV. THREATS TO VALIDITY

We discuss the validity of our studies and results using the
guidelines from Wohlin et al. [18].

Conclusion validity: To mitigate the fishing threat, we
employed a software tool for tagging that presented only the
reviews’ contents to the annotators, involved five annotators,
and defined a detailed tagging procedure. Then, to increase the
reliability of the results (i.e., the reliability of the measures,
the heterogeneity of annotators, and the subjectivity of the
tagging), we developed a detailed tagging schema based on
the structure of the ISO 25010 standard, and we performed a
pilot study. We also discussed any inconsistencies and doubts
among the annotators to ensure that we provided each review
with the most suitable tag we could. Moreover, we reported
both the number of reviews and the number of statements to
provide better insights into our findings on the user feedback.

Construct validity: Another issue that might have threatened
our results concerns the way the reviews are written. The
language is mostly informal, the knowledge of the users varies
greatly and many users write poorly or ambiguously. This also
compromised the certainty with which the matched statements
in Study II could be marked as TPs. In case of doubt, such
statements was marked as FPs.

Internal validity: Obviously, there could be some variation
in user feedback that is related to a certain (type of) app. Thus,
we based our results on a stratified sample (see Table I) and
included different apps (product, category, cost) from the three
most popular app stores.

External validity: Although our conclusions are based on a
sample of reviews for 12 apps (Study I on 360 reviews, Study
II on 131,928 reviews), to increase the ability to generalize
the results, we used quite a wide variety of apps regarding
category and cost. The obtained online reviews come from
three different international app stores, and we assessed these
across all possible ratings. Of course, it should be noted that
the findings might not be generalizable to other, less interac-
tive products, as some may show entirely different patterns.
Concerning the possibility of automating the extraction of



quality-related statements, the conclusions are restricted to
only statements about the characteristic “usability” in English.

V. RELATED WORK

Since quality requirements are a crucial in specifying
software [19] but getting a complete and correct set of
quality requirements is difficult [13], many researchers and
practitioners have been working on methods for elicitation
and specification of quality requirements (e.g., [11], [20]).
Such methods use various techniques to assist those who
elicit and specify requirements. These techniques include goal
modeling and noting down requirements patterns like in NFR
Framework [19], PABRE [21], or templates like NoRTs [22]
are suggested. The data on quality aspects extracted from
online reviews can be combined with such methods as used
as prompts or help with prioritization of requirements.

Combining data extracted from online reviews with ex-
isting methods may help make them less costly. A good
example is the “NFR method” of Fraunhofer IESE [14]
[23], an industry-validated approach to eliciting a complete
set of quality requirements. This method assumes a backlog
of experience-based artifacts to identify potentially relevant
quality characteristics. This backlog is modified in several
discrete steps to tailor it to the specificities of the project
(i.e., the domain in which the quality requirements need to
be elicited). This process is work- and cost-intensive and
requires domain experts who typically have very limited
availability. One way to reduce the manual effort required
to perform the NFR method is to automate some of its
steps. Such an approach using automation would make use
of text mining to identify statements about relevant product
quality characteristics provided by crowd members. The type
of statements indicates relevant characteristics (for the current
system development task, but also for the experience-based
artifacts). The number and quality of these statements can then
assist in assigning the priority of the characteristics which is
important for focusing the limited NFR elicitation effort.

Analyzing existing textual documents to identify potential
requirements has a long tradition in Requirements Engi-
neering. Since the early 2000s, research has been adapting
computational linguistic techniques to analyze user feedback
for RE [24]. In product-line engineering, document anal-
ysis during scoping has proven to contribute to a better
understanding of the domain better identification of product
features [25]. Analysis of legal texts has been used to extract
relevant requirements for software products in regulated envi-
ronments [26]. Recently, various works have been published
on analyzing app reviews to extract requirements related
information, (e.g., by [5], [6], [7]). To our best knowledge,
only research that has analyzed existing online reviews from
the perspective of quality requirements, is a recent study
by Lu and Liang [10]. They manually tagged 4,000 state-
ments from online reviews on two apps using as tags some
quality characteristics (“reliability”, “usability”, “portability”,
and “performance efficiency”), along with “functional require-
ments” and “others”. In total, they tagged 1,259 statements

(31.4%) as relating to one of the four quality characteristics,
whereas this was only 19.0% in our work. They found that
a classifier using the Augmented User Reviews – Bag-of-
Words technique combined with the Bagging machine learning
algorithm provides the best results. The authors report a
weighted average precision of 0.714, and a weighted average
recall of 0.723, though for only the quality characteristics, the
weighted precision is 0.654, and the weighted recall is 0.505.
In earlier work, they iteratively derived keywords by analyzing
reviews about iBooks, based on which a classifier could
identify functional and non-functional requirements [17].

With Crowd-based RE (CrowdRE), text mining techniques
have been adapted to derive statements about requirements
in natural language texts [8]. To this end, the checklists and
templates used in the NFR-method are replaced by or at
least augmented with keywords and queries that make use of
those keywords to identify statements from texts (e.g., from
crawled product reviews in app stores). But the use of Crowd-
based Requirements Engineering to derive relevant product
characteristics is not limited to smartphone apps in the above
mentioned NFR method. Browsing a catalog of Non-functional
Requirements Templates (NoRTs) [22] could also be supported
with knowledge about which qualities are regarded as more
important. Also, some prompts could be provided regarding
how to tailor NoRTs to get quality requirements that suit
potential users. Goal-oriented approaches could also benefit
from CrowdRE, as the found characteristics would augment
the goal models, typically as soft-goals or quality goals. The
proximity of statements could be used to provide hints for
relationships in goal models (e.g., [20]).

VI. CONCLUSION

Online user reviews are increasingly being considered as a
source of requirements (see [8] for a review), but the focus
has so far been on functional requirements. To assess whether
they could also contribute to NFR elicitation, we analyzed the
contents of online reviews about apps for statements about
software product quality in two related studies according to the
characterization of the ISO 25010 standard. By doing this, we
sought to answer two research questions: (RQ1) what quality
aspects are raised by users?, (RQ2) How should language
patterns be defined so that automation can uncover quality
aspects formulated by users?.

Through two consecutive studies, we identified statements
about software product quality in online reviews that may pro-
vide a valuable source of information to formulate or improve
quality requirements. Currently, such statements are not being
considered in existing research on eliciting requirements. From
the outcomes of our studies, we gather that the user feedback
in online reviews can provide relevant information on app
quality, but only on aspects by which users are affected.

Regarding the question what quality aspects are raised by
users (RQ1), we found that they especially contribute valuable
information on the subcharacteristics they encounter during
runtime. By further assessing the characteristic “usability”,
we found that particular words and word combinations are



typical for the characteristic “usability”, making it possi-
ble to efficiently identify and classify statements on quality
through automation by searching for these patterns (RQ2).
The outcomes of these searches can support the elicitation
of requirements. Beyond just measuring the degree to which
users perceive “usability”, specific requests and problems
with the app (e.g., regarding “operability”) can be identified.
Understanding how users perceive the quality of an app, what
problems they encounter and what requests they have, can
help in formulating new quality requirements or improving
existing ones. We therefore argue that online reviews should
be considered more seriously as an elicitation source for
quality requirements.

End users form a primary target group of apps, and we
found that in online reviews, they report on their firsthand
experience. Although these reports are limited to that what
the end user can perceive (excluding “maintainability”, among
others), online reviews should be viewed as a valuable source
of expert knowledge on quality issues affecting the end user.

Future work should determine if the distribution pattern
of characteristics that we found when answering (RQ1) also
holds for apps in other categories or for other products (e.g.,
software-intensive systems). To improve the generalizability of
our work, a manual tagging study could also be performed on
a larger share of reviews of each application, include products
with more extreme rating patterns, and assess apps or software
products in other categories than the ones we chose. The set
of language patterns regarding “usability” should be refined
and expanded, while we will investigate how users formulate
other characteristics to determine how these can be identified
through automation (RQ2).

This work has analyzed English-language online reviews
from the international app stores. Although the country of
origin is often not revealed on such platforms, app stores
in other languages can often be pinpointed to more precise
regions our countries, based on which linguistic and demo-
graphic differences could be assessed. Additional analyses on
the relationship of the results to other attributes (e.g., the
number of app users) could help us gain a better understanding
of the significance and background of our results. Based on our
results, mechanisms could be investigated that encourage users
to express their user feedback on quality in a more structured
way, along with approaches to help app developers extract
actionable information from user feedback.
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“Software feature request detection in issue tracking systems,” in Re-
quirements Engineering Conference (RE). IEEE, 2016, pp. 166–175.

[7] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
on automatically classifying app reviews,” in Requirements Engineering
Conference (RE). IEEE, 2015, pp. 116–125.

[8] E. C. Groen, N. Seyff, R. Ali, F. Dalpiaz, J. Doerr, E. Guzman,
M. Hosseini, J. Marco, M. Oriol, A. Perini, and M. Stade, “The Crowd
in Requirements Engineering: The Landscape and Challenges,” IEEE
Software, 2017, to appear.

[9] K. Pohl, Requirements engineering: fundamentals, principles, and tech-
niques. Springer Publishing Company, Incorporated, 2010.

[10] M. Lu and P. Liang, “Automatic Classification of Non-Functional
Requirements from Augmented App User Reviews”, Intl. Conf. on
Evaluation and Assessment in Software Engineering, pp. 344–353, 2017.

[11] D. Ameller, C. Ayala, J. Cabot, and X. Franch, “Non-functional require-
ments in architectural decision making,” IEEE software, vol. 30, no. 2,
pp. 61–67, 2013.

[12] L. M. Cysneiros and J. C. S. do Prado Leite, “Using uml to reflect non-
functional requirements,” in Proceedings of the 2001 conference of the
Centre for Advanced Studies on Collaborative research. IBM Press,
2001, p. 2.

[13] L. Chung and J. C. S. do Prado Leite, “On non-functional requirements
in software engineering,” in Conceptual modeling: Foundations and
applications. Springer, 2009, pp. 363–379.

[14] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki, “Non-
functional requirements in industry-three case studies adopting an
experience-based nfr method,” in Requirements Engineering Conference.
IEEE, 2005, pp. 373–382.

[15] K. A. Neuendorf, The content analysis guidebook. Sage, 2016.
[16] ISO, “ISO/IEC 25010 - Systems and software engineering - Systems

and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models”, 2010.

[17] H. Yang and P. Liang, “Identification and Classification of Require-
mentsfrom App User Reviews”, International Conference on Software
Engineering and Knowledge Engineering, pp. 7–12, 2015.
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