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Abstract. Serious Games research has become an active research topic
in the recent years. In order to design Serious Games with an appro-
priate degree of complexity such that the games are neither boring nor
frustrating, it is necessary to have a good understanding of the factors
that determine the difficulty of a game. The present work is based on the
idea that a game’s difficulty is reflected in the structure of its underlying
state space. Therefore, we propose metrics to capture the structure of
a state space and examine if their values correlate with the difficulty of
the game. However, we find that only one of the metrics, namely the
length of the optimal solution, influences the difficulty of the game. In
addition, by focusing on the part of the state space, which is actually
explored by human players, we can identify properties that predict the
game’s difficulty perceived by the players. We thus conclude that it is
not the structure of the whole state space that determines the difficulty
of a game, but the rather limited part that is explored by human players.
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1 Introduction

Serious Games development has become a growing field in research and indus-
try in the last years. The idea of embedding a purpose, like mental or physical
training, into a gaming environment has proven to be a fruitful approach. The
core of many Serious Games, especially those concerned with cognitive train-
ing, contains a game logic which determines how challenging the game will be
for players. In the process of developing Serious Games, it is thus of essential
importance to understand what makes a game logic challenging for humans.
Otherwise, it would be a matter of chance to design adequately difficult games
which are neither too easy — therefore boring for players — nor too hard — and
therefore frustrating.

Understanding how humans deal with tasks they are faced with and what
they perceive as difficult is of great relevance in the field of complex problem solv-
ing [1]. Complex problem solving is a broad and active research field [2,3] which
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has produced a wide range of results about how humans solve problems, which
heuristics they use, and which properties determine a problem’s complexity. The
present research focuses on the question which factors determine the difficulty
of a problem. There exist several research approaches to identify these factors:
Halford et al. [4] propose relational complezity as a measure for a problem’s diffi-
culty. They introduce the idea of a relation which contains the elements that need
to be processed in parallel in order to solve the problem. The dimension of such
a relation, hence the number of contained elements, is proposed as a complexity
measure. According to Halford et al., humans are only able to process relations
of dimension four or less, larger relations need to be split and processed serially.
Therefore, the number of elements which need to be processed in parallel, can
be used as a complexity measure. However, determining the relations and their
dimension for a board game, and therefore, determining its difficulty with this
method, is not obvious at all.

Kotovsky et al. [5] choose a different approach and show that the difficulty
of a problem is strongly dependent on the cover story under which the problem
is presented to the player: they presented the players different representations
of the problem Tower of Hanoi and discovered that the solving performance
varies considerably depending on the representation. However, these findings do
not explain the intrinsic difficulty of a problem, since the problem is not varied,
but the representation. Our focus of interest lies in the difficulty of the problem
itself: which kind of structure makes a problem difficult, which one makes it
easy — independent of the representation or cover story? In order to address
this question, we use the concept and analysis of a state space of games as it
is defined in the following. As a proof of concept of the proposed method, it
is applied to a simple board game with defined states and defined rules of how
to change these states for which it is feasible to compute the complete state
spaces. Nevertheless, choosing such a simple board game might be of benefit
for the development of Serious Games since gaining a general understanding of
what is the dominant factor influencing the difficulty of a game, is an important
prerequisite for designing appropriately difficult games.

2 Approach

The present work investigates the complexity of a simple board game. Our
research is based on the assumption that the structure of the state space of
a problem (i.e., of a board game configuration) should reflect the difficulty of
the problem. For example, we assume that the size of the state space influences
the perceived difficulty of a game, or that the average number of applicable rules
per state correlates with the perceived difficulty. A motivation for this assump-
tion can be seen in Figure 1 which shows the state spaces of games with a low
and with an advanced degree of difficulty. It is intuitively clear that the structure
of the state space should be related to the difficulty of the game. The present
work aims to systematically investigate this relationship.

Anderson et al. define problem solving as a “goal-oriented sequence of cogni-
tive operations” that transforms a present state into a desired state [6]. From this



Insights from the State Space of a Simple Board Game 149

definition, the concept of a state space, already proposed by Newell in 1979 [7],
arises almost immediately: a state space is a graph G = (V, E), with V the set
of all game configurations reachable from the start state by a series of allowed
moves, E C V x V the set of possible moves. Hence, the state space (two exam-
ples are shown in Figure 1) for a fixed game configuration contains one node for
each configuration which can reached from the start configuration by moves. The
connections between the configurations represent possible moves. In this setting,
problem solving consists of the task to find a path through the state space from
the start to a goal state, which can be seen as a searching task. The represen-
tation as a graph allows us to use ideas from complex network analysis [8] to
assess the complexity of the structure of the state space.

However, the present work shows that simple metrics to measure the structure
of a state space are either not able to capture its structure in sufficient detail,
or do not correlate with the problem’s difficulty at all. For this purpose, the
present paper is organized in two parts: we first introduce several metrics which
are based on the structure of the state space and then show that they are —
except of one — independent of the problem’s perceived complexity. This can
be confirmed by an experiment. As a second approach, we focus on the idea
that the structure of the whole state space itself is less important than the part
that is actually exzplored by a player. The first (qualitative) result is that the
solving methods of different players are very similar to each other. Based on
this, we focus on the part of the state space that is actually used by the human
players. We therefore introduce measures that quantify aspects of the paths used
by the participants in an online experiment and show that these measures do
correlate with the perceived difficulty of the game. We thus provide evidence
that the possible ways to solve a problem are less important than the ones that
are normally used to solve it.

3 Analyzing the Structure of a State Space

The board game of interest is called Rush Hour.! It takes place on a grid of 6 x 6
fields, representing a parking lot, with one exit (cf. Figure 1). Cars of width 1
and length 2 or 3 are placed on the board vertically or horizontally and can be
moved forwards or backwards as long as the needed fields are not occupied by
any other car. Cars cannot move sideways and are not allowed to change their
row or column, respectively. Given a configuration of cars placed on the grid, the
goal is to find a sequence of moves that allows a particular car (the rightmost
car in the third row, in Figures la and lc the black one) to be moved from the
board through the designated exit. Rush Hour is well suited for this research
for several reasons: it is easy to understand how to play, yet it is still possible
to design arbitrarily complex games as well as very easy ones, i.e. the range of
complexity of possible games is broad and diverse. Furthermore, it is not obvious
at all what determines the difficulty of a game.

! The game was invented by Nob Yoshigahara and is distributed by ThinkFun Inc.
and HCM Kinzel (Germany).



150 M. Bockholt and K.A. Zweig

Figure 1 shows two examples of state spaces. The first one is that of a version
of a game which is designed for children, the second one for experienced players.
It is obvious that the second network is larger and more complex. This finding
was the starting point for devising complexity metrics quantifying the structure
of the state space.

In [9], we introduce 17 metrics for Rush Hour start configurations based on the
structure of the state space, following the assumption that these network analytic
metrics reflect the complexity of solving the game. Out of the 17 defined metrics,
only eleven are presented here, since the metrics which are left out are structurally
similar to the ones presented here and do not provide any further insights. Detailed
information are provided in [9]. The metrics are based on the idea that the per-
ceived difficulty for solving a game could depend on several factors, as exemplified
in (i) to (viii) where the metrics are indicated in italic. These factors are

(i) the size of the state space (number of nodes and edges), since more states
may need to be explored (leads to the two metrics nodes and edges),

(ii) the number of possible moves in every state (leads to the metric avdg as
the average node degree),

(iii) the minimal number of moves needed to reach the goal state (Isp as the
length of the solution path),

(iv) the number of correct moves relative to the number of possible moves in
every state (br as branching complexity), whereas correct moves means
all moves which decrease the distance to a goal state,

(v) the number of possible shortest solution paths (sp as the number of short-
est paths),

(vi) simple board game properties (cars as the number of cars and fields as
the number of occupied fields on the board),

(vii) the average number of cars which can be freely moved in every state (mc
as movable cars), since a smaller or larger number of objects which can
be chosen as part of the solution way might influence the difficulty, and

(viii) the number of counterintuitive moves required in a solution path (cm as
the weighted number of needed counterintuitive moves in a solution path
and c¢mpl as this number normalized by the solution path length).

Point (viii) is based on findings from research in cognitive psychology which
identify heuristics humans apply for solving a task. The most often used heuristic
is called hill-climbing [10]: in this strategy, the current situation is compared with
the desired situation, and the operator which yields a more similar situation to
the solution is chosen. In our game, the goal is to unblock the black car and move
it forward to the exit. A human playing the game according to the hill-climbing
method will try to successively remove the blocking cars out of the way of the
black car and to successively move it towards the exit. But there are starting
configurations for which the solution requires moving the black car backwards or
temporarily blocking the black car by another car. Because these kinds of moves
contradict the hill-climbing method, we call these moves counterintuitive moves
and suppose that a larger number of counterintuitive moves needed in a solution
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(a) A game configuration
designed for children. The
black block needs to be
removed from the board
by moving it through the
exit on the right side. The
white blocks are cars that
can also be moved in their
row respectively column.
The other cells are unoc-
cupied.

(¢) A game configura-
tion of moderate diffi-
culty designed for adults.
As in the children’s ver-
sion, the black car needs
to be removed from the
board through the desig-
nated exit.

(b) The state space belonging to the board configura-
tion in Figure la. Each node represents a board configu-
ration, the edges represent changes of the cars’ position.
The white node on the left is the the start configuration
shown in Figure la, the black node is the configuration
in which the black car can be moved from the board.

The shortest solution path of length four is indicated by
bold edges.

(d) The corresponding state space to the board configu-
ration shown in Figure 1c. The start node is in the lower
left corner, the solution states in the upper right corner.

Fig. 1. Two examples of Rush Hour game configurations and their corresponding state

spaces
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should increase the difficulty of the game (¢m). To reduce the influence of the
solution path length, the metric ¢m is normalized by the length of the shortest
solution path (cmpl).

In order to test the introduced metrics, an objective measure for the diffi-
culty of a board game is needed. With an objective difficulty measure at hand,
one could compare the proposed metrics’ values with the true difficulty of the
game and check if there is a connection. Though, in general, there is no objec-
tive measure for the difficulty of a board game. Therefore, in this article, we
use two different sets of difficulty measures to approximate the true difficulty.
The first set contains a single measure: the categorization by the manufacturer
who classified the games into five categories (beginner (B), intermediate (I),
advanced (A), expert (E), and grand master (G)). The second is a set of four
measures and is based on online experiments with human players: (i) the per-
ceived difficulty as rated after solving the game, (ii) the participants’ average
solving time, (iii) the participants’ average number of moves, and (iv) the partic-
ipants’ average number of moves normalized by the minimal number of necessary
moves. The manufacturer of the Rush Hour game provides five game card sets
with start configurations of five different levels of difficulty. Leaving identical
configurations and configurations with a slightly different goal aside, 173 start
configurations with the manufacturer’s rating of complexity are available. The
game logic and a breadth first search from every start configuration was imple-
mented in order to create the state spaces and to compute the metrics for every
configuration.

We organize the results in two different sections, depending on the set of
difficulty measure the metrics’ values are compared with: first, we compare the
metrics’ values with the manufacturer’s difficulty rating. We find that there is
no correlation for most of the proposed metrics between its value for the game
and the game’s difficulty rating. The results are visualized in a box plot diagram
shown in Figure 2a in which each metric’s values are plotted, ordered by man-
ufacturer rating (beginner, intermediate, advanced, expert, and grand master).
It can be seen that the only correlation is between the difficulty and the metric
lsp which is the length of the solution path. It is a surprising finding that none
of the other metrics shows any connection to the difficulty of the problem as
categorized by the manufacturer.

As a second set of difficulty measure to compare the metrics with, experimen-
tal data is used: we selected 24 games of different difficulty level and conducted
a study in which each of the 74 participants played at least six of the selected
games. After solving a game, the participants were asked for a difficulty rating.
The experiment was conducted as an online study, i.e. the game was browser-
based such that the participants could participate at any time and at any place.
All moves the players did were logged with timestamps. It was made sure that
every participant attempted every game at most once. The majority of the par-
ticipants indicated that they have not played the game Rush Hour before.

From this study, the second set of difficulty measures as described above can
be derived. As in the previous analysis, we found that only the solution length
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(a) Values of the complexity metrics categorized by the company’s difficulty
classification (beginner (B), intermediate (I), advanced (A), expert (E), grand
master (G)). The scales are logarithmic. Games from the junior edition are
excluded from analysis.
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(b) Complexity metrics plotted versus the participants’ difficulty rating. The
scales are also logarithmic.

Fig. 2. The introduced complexity measures, compared with the manufacturer’s diffi-
culty rating and with experimental data
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based metric correlated with the difficulty rating assigned by the participants;
no correlation was found with any of the other metrics (cf. Figure 2b). All the
other participants’ based difficulty measures as defined above also do not show
any correlation with the state space metrics — except for the solution length
based one.

4 Quantifying Navigation Paths in the State Space

Since the proposed state space metrics, except of one, do not show a correlation
with any of the difficulty measures, there are two possible explanations: either
a game’s underlying state space is completely independent from the difficulty
of the game, or the proposed metrics are not able to capture the features of
the state space which determine the game’s difficulty. Thus, we decided to look
more closely at how the participants navigated in the state space of the game
while solving it, i.e., in the structure of the part of the space that is actually
explored by the players. In Figure 3, we show the state space of a game and how
the participants navigated through it. Both in this as well as in the visualizations
for other games (not shown here), it is clearly recognizable that all of the partic-
ipants preferred to take almost the same route through the state space although
it is not necessarily the shortest one. This qualitative observation supports the
assumption that the players are guided by the same heuristics in their solution
strategy.

Fig. 3. Visualization of a state space and how the participants navigated through it
while playing. The start node is elliptic and white (on the right side), visited nodes
are black, not visited nodes are gray. Reached final nodes are black and elliptic, not
reached final nodes are gray and elliptic (on the left side). The thickness of the edges
shows how many from the 29 players took this transformation.
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In order to approach the question of why it is more difficult to find a way
through the state space to reach a solution for some versions of the games than
for others, we examined the navigation of the participants through the state
spaces more closely. The assumption is that participants lose their way while
finding a solution, this could give them the impression that the game is harder.

Modeling that a player gets lost or is losing one’s way can be done in several
ways. If players struggle with finding a way to a final state, they will surely
need more moves than necessary. Therefore, we consider how many moves the
players needed in relation to the number of necessary moves. Indeed, a correla-
tion between the perceived difficulty of a game and the number of used moves
normalized by the number of moves in the optimal solution can be found as it
can also be seen in Figure 4a.

The second approach to quantify a player’s loss of orientation is to count the
number of times the same state is visited within one trial of solving a game.
For each state and player, we define as the node visitation the number of times
the player visited this node while playing. As a measure for losing orientation
while solving the game, the average node visitation and mazimum node visitation
are considered, the former being the mean value of all node visitations of all nodes
visited, the latter being the maximum value for one player and one game.
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(a) Relative path lengths of the selected  (b) Maximum node visitation of all
games. The x-axis contains each of the 24  players and all games plotted against
games which were played by the partici-  the participants’ rating of the respec-
pants, the games’ ordering on the x-axis  tive game.

is determined by increasing average dif-

ficulty rating by the players. The y-axis

shows the length of solutions found by the

players, normalized by the length of the

optimal solution of the respective game.

Fig. 4. Two different approaches of capturing a player’s loss of orientation
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Figure 4b shows the mazimum node visitation for all games and all players,
ordered by difficulty rating of the players (the corresponding figure with the
average node visitation is except of the scale very similar to this one). The figure
reveals a significant relation of the node visitations to the difficulty classification
of the players. Therefore, the degree of how much a player loses orientation is a
good indicator for how difficult he or she will perceive the game. This leads to
the conclusion that a problem’s complexity does not only depend on objective
properties, but there is also a high correlation with the individual performance.
Note furthermore that the maximum node visitation takes on surprisingly high
values, indicating that getting lost in a huge state space is a general issue in
human problem solving. This could also be an important insight for the devel-
opment of Serious Games since supporting the player not to visit the same state
several times, can be realized in a Serious Game and avoid frustration on the
players’ side.

5 Conclusion and Outlook

The present work shows that although it seems obvious that the state space of a
game is expected to reflect the game’s difficulty for a human, the most intuitive
metrics do not capture the game’s difficulty. Only one not surprising metric, the
length of the optimal solution path, shows a strong correlation to the game’s
difficulty. This finding is consistent with the results of Jarusek and Peldnek [11].
Jarusek and Peldanek also assume that the structure of the state space of a
problem should determine the difficulty of the problem, and propose different
metrics to measure the structure, but find poor correlations to the difficulty
as well [12]. However, a qualitative observation of the participants’ navigation
through the state space confirmed the known fact that humans follow common
methods in solving a problem and that this is constrained to a small part of the
state space that is actually used by them. By focusing on this part of the state
space, which is explored by the human players, we can identify properties that
predict the perceived difficulty of the players. We thus conclude that it is not the
structure of the whole state space that predicts the difficulty of a game, but the
rather limited part that is explored by human players, which is, moreover, less
individual than previously thought.

In future work, it might be interesting to consider the structure of reduced
state spaces of Rush Hour due to the following reasons: in the course of a game,
there are situations in which two or more cars need to be moved, but it does
not matter in which order these moves are taken. Though, each of the possible
move orders induces its own path in the state space while actually representing
the same moves. In other situations, it is not of importance for the further game
if a car is moved one cell more or less when it blocks the same set of other
cars in both situations. Nevertheless, all future game states are multiplied by
the number of equivalent move possibilities since every distinct position of a
car generates a new state in the state space, even if they represent very similar
situations. This is also reason for the large size of the state spaces and might
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explain why the size of the state spaces does not show any correlation to the
difficulty of the game. Therefore, it might be worth shrinking the state spaces in
the sense that states with the same meaning as described above are merged into
one state. This step should decrease the size of the state spaces enormously and
might change the values of our defined metrics. It is imaginable that the size of
the reduced state spaces then allows a prediction of the difficulty of the game.

In addition to that, in order to generalize the results to the domain of Serious
Games, other games need to be considered. The structure of state spaces might
be totally different for other games which might influence the difficulty. For
example, not all games generate state spaces in which all moves are reversible:
there might be moves which do have a greater influence on the further game
course than others since they make the player leave a part of the state space
which can not be entered again. Further research needs to show if the presented
results can be transferred to different games.
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