A NETWORK ANALYTIC
APPROACH FOR EXPLORING
THE COMPLEXITY OF RUSH

HOUR

MAREIKE BOCKHOLT*

1 INTRODUCTION

It is well known that problem solving capabilities of humans and computers
differ in several aspects: While human can make use of their experiences,
creativity, and some kind of intuition, computers must rely on the given data
and algorithms in which not all real world constraints may be implemented.
On the other hand, in processing and storing a big amount of information
and dependencies, computers clearly outperform humans. Hence, it might
be a promising approach to combine the structural advantages of human and
artificial problem solving abilities in order to construct human-computer co-
operative and interactive systems [1]. With the purpose of dividing subtasks
between human and computer agents, it is necessary to better understand
why some subtasks may be a challenge to solve for both. In computer sci-
ences, complexity theory has been providing a broad range of results about
problems’ difficulty for being solved by algorithms. However, in cognitive sci-
ences, there are only a few approaches to systematically analyze a problem’s
complexity for humans to solve it ([6], [5], [4]).

The present work uses the one-player game Rush Hour to exemplarily
investigate the difficulty of a complex task for a human solver. But instead
of only considering the game’s intrinsic properties, we observe that a game’s
problem space — all from a starting configuration reachable game states with
their transitions into each other — is a network (cf. figure 1 or 7). We expect a
problem space’s structure to reflect the complexity of its corresponding game.
In this work, we introduce measures to capture a problem space’s structure
in order to investigate whether the structure and the corresponding game’s
difficulty correlate. Furthermore, we describe the findings of a conducted
experiment in which the participants played some of the studied games
which were selected due to their complexity measures. The results’ analysis
reveal essential flaws in human problem solving abilities which could be
compensated by a computer-aided system.

2 APPROACH

Our research focus lies on the one-player board game Rush Hour, a sliding
block puzzle game which takes place on a grid of 6 x 6 cells, representing
a parking lot, with one exit (cf. figure 1). Cars of width 1 and length 2
respective 3 cells are placed on the board vertically or horizontally and can
be moved forwards or backwards as long as the for the movement needed
cells are not occupied by any other car. Cars cannot move sideways or rotate,
and are not allowed to change their row or column, respectively. Given a
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Figure 1: A Rush Hour game instance with its corresponding problem space: the
green state represents the shown configuration, the blue state corresponds to a final
state, i. e. a state in which the red car can be moved through the exit, the transitions
constitute all possible moves. The numbers in the nodes correspond to the positions
of the cars in their row or column: the first/second/third /fourth digit corresponds
to the red/green/blue/yellow car’s position.
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configuration of cars placed on the grid, the goal is to find a sequence of
moves that allows a particular car (in figure 1 the red one) to be moved from
the board through the designated exit.

It is obvious that the difficulty of finding a solution sequence is deter-
mined by the board configuration in the beginning. But is it possible to
quantify the factors that contribute to the difficulty of a game? In order to
answer this question, it might be useful to abstract from the explicit board
configuration, but to consider the state space of it.

For every solvable board configuration, there is a unique state space
which consists of the start configuration and all from there by allowed moves
reachable board configurations. Two configurations (states) are linked if they
can be transformed into each other by an allowed move (cf. figure 1). Finding
a sequence of moves to solve the game can then be understood as finding a
path through the state space from the start state to one of the solution states.
The underlying idea of our research is that the difficulty of solving a game,
meaning finding a path through the state space, should depend on the state
space’s structure. State spaces of different structures should yield games of
different levels of difficulty. The following section deals with the question of
how the structure of a state space can be quantified in order to compute the
correlation between a game’s complexity and its state space’s structure.

2.1 Measuring a network’s structure

In the following, several network measures are introduced which could
capture a network’s structure and be associated with the difficulty of solving
the corresponding problem. In the following, the measures are introduced in
an intuitive and informal way. The appendix contains a formal description
(see section A.1). We propose the following measures:

SIZE OF STATE SPACE Since a game could turn out to be more difficult to
solve if there are more possible states to explore, we introduce three
different measures based on the size of the state space: number of
reachable states (nodes), number of reachable states without the final
states (nodf), and number of possible moves (edges).

LENGTH OF SOLUTION The number of needed moves to reach a final state
should increase the difficulty of a game, therefore, we introduce the
measure length of shortest path (Isp) which is the minimal number of
moves from the start configuration to any of the final states. It can
be observed that a state space can have different final states which
have different distances to the start configuration — even if one takes
the shortest possible path. To model this observation we introduce a
measure based on the length of the solution path: the average solution
length (avisp) which is defined as average number of moves to a final
configuration (if the shortest path is used).

NUMBER OF DECISION POSSIBILITIES In every configuration the player
has several possibilities which move next to take. We hypothesize that
a game should be harder to solve if there are more possibilities to
consider in every move. Therefore, we introduce the following metrics:
the average degree (avdg) is defined as the averaged number of decision
possibilities, taken over all states except the final states. Since the state
space might contain a huge number of states of which the most players
only explore a small fraction, we approximate this fact by restricting the
state space to a smaller one, namely the one which only contains states
on shortest paths to a final state. Basic assumption is here that this will
approximately be the part of the state space which most players will
use for their solution. Counting the decision possibilities a player has
in this restricted state space (the possibility of leaving the restricted
state space included resp. excluded) yields, averaged over the number



of states considered, the measure avdgog resp. avdgop. We observe that
there are many states in which a great number of moves are possible,
but most of them belong to optimal solution paths. Making a right
decision should be harder if the ratio of good decisions to the number
of all possibilities is small than if there are only good choices to make.
Therefore, we propose the measure of branching complexity (br): we
define the branching complexity of a single node as the number of bad
choices (i. e.the number of possible moves which do not belong to the
optimal solution path) divided by the total number of choices. The
branching complexity for the network is then the average of the branching
complexity of all nodes.

NUMBER OF OPTIMAL PATHS Furthermore, we hypothesize that the num-
ber of different optimal paths could influence the difficulty of a game.
For this reason, consider the measure shortest paths (sp) which counts
the number of possible optimal paths from the start configuration to a
final one, and the measure shortest paths per final state (sppf) which is
sp divided by the number of final states.

GAME PROPERTIES Up to now, only properties of the state space were con-
sidered such that the aforementioned measures could also be applied
to any other board game for which the concept of a state space makes
sense. Therefore, we also want to consider game specific measures:

o The simplest approaches only use the number of cars (cars) a
configuration contains respectively the number of occupied cells
on the board (fields), since handling more movable objects in
finding a solution is supposed to be cognitively more challenging.

¢ On the other hand, having more cars on the board often means
that the cars block each other such that there are effectively less
objects to handle. For that reason, the average number of movable
cars in every configuration is calculated and taken as measure mc
(which is similar, but not the same as avdg). For the same reason
as above, we also consider this measure on the restricted state
space of optimal paths (mcop).

NOT INTUITIVE MOVES From research in human problem solving, it is well
known which heuristics humans apply for solving a task. One of them
is called hill-climbing [2]: the current situation is compared with the
desired one, the operator which yields a more similar situation to the
solution is chosen. In our game, the goal is to unblock the red car
and move it forward to the exit. A human playing according to the
hill-climbing method, will try to successively remove the blocking cars
out of the way of the red car and successively move it towards the exit.
Though, there are a lot of board configurations for whose solution it
is necessary to move the red car backwards or to temporarily block
the red car by another car. Because this kind of moves contradicts
the hill-climbing method, we call these moves counterintuitive moves
and suppose that a larger number of counterintuitive moves needed
in a solution should increase the difficulty of the game. Therefore, we
define the number of counterintuitive moves as measure, weighted
by the factor in how many solution paths this counterintuitive moves
appears (cm). Since longer solution paths are expected to contain more
counterintuitive moves, but the length of the solution path is already
represented in the measure Isp, we normalize cm by Isp and get the
measure cmpl.

An overview of the introduced measures and their range of values can be
found in table 1.



MEASURE DEFINITION /EXPLANATION RANGE

nodes number of states in problem space N

nodf number of states in problem space without final N
states

edges number of transitions in problem space N

Isp length of optimal solution N

avlsp average length of solution R>o

avdg average number of decision possibilities R>o

avdgop average number of decision possibilities on opti- R>o
mal paths (and to stay on optimal paths)

avdgog average number of decision possibilities on opti- R>o
mal paths

br average fraction of transitions that lead away [0,1]
from optimal paths

sp number of shortest paths from the start configu- N
ration to a final state

sppf number of shortest paths per final state R>o

cars number of cars {0,...,18}

fields number of occupied cells {0,...,36}

mc average number of movable cars R>o

mcop average number of movable cars on optimal paths R>o

cm weighted number of counterintuitive moves R>o

cmpl weighted number of counterintuitive moves in R>o

relation to length of solution

Table 1: A summary of the used complexity measures.



2.2 Data

We used the level card packs that are included in Thinkfun’s Rush Hour
game. There are three standard level card packs (1 (regular edition), deluxe
and junior edition) as well as three additional level card packs (2,3, and
4). Each card pack contains 40 (deluxe:60) different start configurations
whereas a difficulty estimation is assigned to each start configuration by
Thinkfun (beginner, intermediate, advanced, expert, and grand master). In
the following, the configurations from every card pack are used, except of
cards from the Junior edition. Configurations in which two red cars instead
of one need to be removed from the board are excluded from further analysis
as well as identical configurations from different packs are used only once.
Table 2 shows how many level configurations from which card set and in
which difficulty level were available and used for the following analysis.

B I A E G SUM

Junior 10 10 10 10 O 40
Standard 10 10 10 10 O 40
Deluxe o 3 3 3 8 27
Set 2 o 10 6 7 32
Set 3 0O 10 10 9 9 38
Set 4 o 10 10 8 8 36

SUM 20 43 42 36 32‘ 173

Table 2: Number of used start configurations of each card pack Thinkfun provided,
ordered by its difficulty rating: beginner (B), intermediate (I), advanced (A), expert (E),
grand master (G).

3 ANALYSIS AND RESULTS

The above introduced measures were computed for all available level cards
and are analyzed in order to discover a correlation between the value of the
measure and the difficulty rating given by Thinkfun. The results are visualized
in a box plot diagram shown in figure 2 in which each measure’s values
are plotted, ordered by difficulty level (beginner, intermediate, advanced,
expert, and grand master). Each box contains 50 % of the data, the black
bar in the box represents the median of the data. A box” whiskers show the
minimum respective maximum data point which is no more than 1,5 times the
interquartile range from the box. Values outside of this range are shown as
outliers as single points. If a measure perfectly correlated with the difficulty
rating, the boxes would be flat without any whiskers or outliers and would
lie on an ascending line.

Considering figure 2, it can be clearly seen that this perfect correlation
does not occur for any of the proposed measures. Though, one can observe
a correlation between the difficulty and the measures Isp and avlsp which
are both related with the length of the solution path. This observation is
in agreement with the findings of Ragni et. al. [6]. Though, it is remarkable
that even the solution path length based measures have a considerably large
range and even outliers. Under the assumption that the difficulty rating
is correct, there must be easy games with a long solution path as well as
hard games with an unusually short solution path. Therefore, there must be
further factors which contribute to the difficulty of a game.

All other measures do not allow any clear conclusions. Table 3 in the
appendix shows the mean values and standard deviation of all measure
values, ordered by the game’s difficulty rating. Furthermore, one column
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Figure 2: Values of the complexity measures, visualized with a box plot, separated by
difficulty classification (beginner (B), intermediate (I), advanced (A), expert (E), grand
master (G)). The scale is logarithmic. Games from the junior edition are excluded
from analysis.

displays the correlation of the measure’s value with the difficulty rating
(Pearson’s correlation coefficient). As it can be already seen in figure 2, only
the solution length based measures Isp and avisp show a correlation with the
difficulty rating of the game. All other measures seem to be, considered as
single predictors, unrelated to the difficulty of the game. But although the
length of solution path turns out to be the single measure which shows a
strong correlation to the difficulty rating of the game, it might be worth to
look at the games which do not fulfill this relationship as there must be other
factors contributing to the true complexity of these games.

In order to find out which other factors there might be, out of the 173
games of interest, 24 games are selected due to their complexity measures
and their difficulty is tested in an experiment.

4 EXPERIMENT AND RESULTS

An experiment was conducted for which 24 games were selected, a part of
them having particularly remarkable values in some measures, a part of them
having measure values close to the mean value of their difficulty category.
The participants were asked to play at least six of the 24 games of increasing
difficulty. It was made sure that each participant played each game at most
once. They had the possibility to quit a game and continue with the next
game, but they did not have the chance to resume an already started game.
The participants were asked to find a short solution, i.e. a solution with a
minimum number of moves. When a participant solved a game, he/she was
asked to rate the game by its difficulty. For the following analysis, 97 data
sets, each containing 6 completed games, were used.
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Figure 3: An overview of the information we have about the experiment’s participants.

4.1 Selection of the level

Table 4 in the appendix shows the measure values of the for the experiment
selected games. The selection contains games whose measure values are quite
close to the measures’ mean values of the category, but also games which have
measure values which are exceptions in their category. The measure which
was the reason to select the game, is highlighted in red. As it can be seen
in table 4, there is a beginners game with an exceptionally large state space
(card pack:deluxe; card:02), an intermediate game with a remarkable short
(card pack:standard; card:15) and one with a remarkable long solution path
(card pack:standard; card:19). Among the advanced games, a game with an
relatively low average degree (card pack:standard; card:26) was chosen as well
as a game which is unusual in several of the measures (card pack:standard;
card:22). The selected expert games contain a game with a low average
degree, only one optimal solution and a high number of counterintuitive
moves (card pack:2; card:28), and a game with an exceptionally large state
space (card pack:standard; card:32). As grand master games, there was,
among two others, chosen a game with a high number of counterintuitive
moves (card pack:deluxe; card:55).

4.2 Players

There were 74 players participating in the experiment, an overview of the
information about them can be found in figure 3. It can be seen that most of



the players are in their twenties, about two third of the players are male, and
the majority of the players did not know the game Rush Hour before.

4.3 Solved and skipped level

Each game chosen for the experiment was played by at least 20 participants.
We first consider how many of the players who started a game were able to
finish or even solve it optimally. For this purpose, consider figure 4 which
shows this relationship. For each game, it is plotted which fraction out of all
players who started this game were able to solve the game or even find the
optimal solution.

The games are ordered by increasing difficulty such that the by Thinkfun
as easy rated games are on the left and the games rated as hard are on the
right. It is remarkable that even among the games which are rated as easy,
there is none which was solved optimally by all of the players. There are
only three games which were solved optimally by more than half of the
players. Among the games rated as intermediate or harder, there are only
very few players who were able to solve the game within a minimum number
of moves. The game deluxe 02B was chosen because of his extraordinarily
large state space, but it was optimally solved by a remarkably high number
of players, it was not even skipped once. This gives a hint that a large state
space does not significantly determine the complexity of the game.

Among the beginner games,
the game which was skipped
the most often and could be 1.00-
optimally solved the least of-
ten, is the game 1 10B which
was chosen because of his
low average degree, mean-
ing the low average number
of move possibilities. The
relatively high failure rate
for this game can not be ex- 025
plained by the length of the

solution path because the \&/\_A
0.00- T 1|

Type solved — optimally solved — skipped

0.75-

Fraction
o
o

game 1 03B with a similarly

long solution path clearly 5SS
shows a better success rate. Level
At the same time, the expert
game 2 28E which was also
chosen because of its low av-
erage degree has a high fail-
ure quote as well.

It strikes that the game with the highest skipping rate is not a game which
had been classified as grand master, but as expert. But this can be explained
by the unusually high number of needed moves for solving the game 1 38E,
it is the highest among all chosen games. Therefore, it is not surprising that
many players did not finish the game.
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Figure 4: Fraction of solved, skipped and optimally
solved games.

In the following, the time and moves the participants needed to complete
a game, are further analyzed. The participants did not play the games in a
controlled environment, but on their own computers, since it was a browser-
based game which could be played on-line. Therefore, we do not have
certainty whether the participants were actively playing after the game was
started or whether they might be distracted. In order to avoid too skewed
results, all moves which took more than ten minutes are set to ten minutes
and all further analysis will be done with these modified times. In addition
to the players needed time and moves, the players’ difficulty rating can be
used for analysis. These information are displayed in figure 5: the horizontal
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Figure 5: An overview of the participants’ solutions of the games. Only solved games
are considered in both plots.

axis lists all in the experiment played games, ordered by increasing difficulty
rating, the vertical axis indicates the number of moves and the time the
participants needed to solve the game (in figure 5a) respectively the difficulty
rating the participants gave the game (in figure 5b).

The rough relationship between the difficulty classification by Thinkfun
and the time respectively the number of moves the participants needed can
be observed here as well. Though, it is striking that there are games which
do not fit in this pattern: Among all beginner games, the game 1 108 seems
to be the hardest one, since the participants needed the most moves and the
longest time to solve it. This can not be explained by the length of its optimal
solution path because the game 1 03B requires a longer solution path, but
was solved quicker by the participants and rated less difficult.

Furthermore, it is remarkable that the game 1 15I shows a large variation
in its difficulty rating although the variation in time and moves is not
noticeable. Having a look at the game’s measures, it can be seen that this
game has a remarkably short optimal solution path, but it was rated as
difficult by several players.

4.4 Correlation to the measures

In the former sections, we found that our proposed network based complexity
measures do not correlate with the difficulty classification of Thinkfun, except
of the solution length based measures. Furthermore, first results of the
conducted experiment were described. Having several different methods at
hand to measure the difficulty of a game (classification by Thinkfun, number
of moves or time needed by the participants, or participants’ rating), it can
be analyzed if the in section 2.1 introduced measures correlate with any of
these.

Figure 6 visualizes this relation: in both figures, each diagram represents
one of the introduced measures (cf. section 2.1), each point in the diagrams
represents one of the 24 chosen games. The average needed time respectively
the average difficulty rating given by the participants for every game is
plotted against the game’s measure value. It can be seen that the former
result that the length of the solution correlates with the difficulty of the game,
is confirmed here. Solving time as well as rated difficulty is correlated with
the length of the optimal solution path.

In addition to that, none of the measures shows a clear correlation to the
complexity of the games. Though, the degree based measures tend to have a

10



20000- *

15000 -
10000 -
5000 -
0 -

[
L]

]
—1 L
©
> 1.0- ° ® e ®
g S st o e
@ 2.0e+10- 2.0e+10 - i
§ 15e+10- 156410~ 15 :
2 10e+10- 1.0e+10—

5.06+09 — 5.06+09 — 10 gFom g

0.06+00— 0.06+00 — 8-

-5.06+09 -5.06+09 -

30—
25—
20—

I I 1 I
IS
FPLPS
IS AN A
Solving time

(a) Complexity measures plotted versus the solution time.

50—

2.0-
1.5-
1.0-

2.0e+10 =
1.5e+10 -
1.0e+10 -
5.0e+09 —
0.0e+00 =
-5.0e+09 -

2.0e+10 -

1.0e+10 -
5.0e+09 -
0.0e+00 -
-5.0e+09 -

Measure value

30-
25— e
20- .

4_
2-
0- ® o

LU S U S B A | LI S B S B e )
1.52.02.53.03.54.04.5 1.52.02.53.03.54.04.5
Perceived difficulty

(b) Complexity measures plotted versus the participants’ difficulty rating.

Figure 6: Relation between the proposed complexity measures and the participants’
needed time respectively their difficulty rating.

11



slight negative correlation with needed time and difficulty rating: the less
move possibilities there are, the more difficult the game is perceived and the
more time is needed to solve the game.

A further observation involves the measures cars and fields whose value
seems to contribute to the difficulty of the game up to a certain degree
from which on the difficulty is independent from them. This finding can
be explained intuitively: having more cars on the board may increase the
difficulty at first because more objects need to be considered in order to
find a solution (see also [4]). But from a certain number of cars on, the
pure number of cars is not the main factor anymore which determines the
difficulty, but their positions, if they block each other, etc.

4.5 Getting lost in the state space

During the experiment, several participants wished for the possibility of
restarting a game which gives a hint that the navigation of the participants
through the problem space might be worth to have a look at. In figure 7, the
problem space of game 1 19] is shown and how the participants navigated
through it. In this and also in the visualizations for the other games, it is
clearly recognizable that the participants preferred to take almost the same
routes through the problem space which is not necessarily the shortest one.
This fact supports the assumption that the players are guided by the same
heuristics in their solution strategy, known from human problem solving
research.

The question why it is more difficult for some games than for others to
find a solution way through the problem space, is still not answered. In
order to approach this question, the navigation of the participants through
the problem spaces is examined closer. The assumption is that participants
lose their way while finding a solution which could give them the impression
that the game is harder.

For this purpose, it is essential to find a quantification for getting lost or
losing one’s way. The first naive approach is based on the simple idea: if a
player struggles with finding a way to a final state, he or she will surely need
more moves than necessary. Therefore, we consider how many moves the
players needed in relation to the number of necessary moves. A visualization
of this analysis is shown in figure 8.

It is interesting that the relative path length (number of moves done
by the player divided by the number of moves in the optimal solution)
correlates well with the difficulty rating by the players as well with the
difficulty classification by Thinkfun — at least for the easier games. The games
classified as harder (advanced, expert, and grand master) do not show such
a clear connection neither to th difficulty rating of the participants nor to the
relative path length. Furthermore, it is striking that range of the relative path
length grows with increasing difficulty classification by Thinkfun.

Considering figure 8b, one can observe that the number of unnecessary
moves the players did while playing, is directly related to their own difficulty
estimation of the game: the more unnecessary moves they did — the more
they got lost in the state space —, the more difficult the game is perceived.
The difficulty classification by Thinkfun does not seem to contribute much,
since the Thinkfun classifications are spread over all difficulty ratings of the
participants in figure 8b. The perceived difficulty of a game seems to de-
pend more on the player’s disorientation than on the difficulty classification
(whereas the classification might influence the extent of disorientation, but
does not predict it perfectly).

Even the simple approach described above for capturing the concept of
getting lost in the state space, shows a clear correlation to the perceived
difficulty of the games. But since it is already known that the perceived
difficulty is dependent from the length of the solution path, the observed
effect might be a result of this dependence. In order to exclude this possibility,

12
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particular game. The color encodes the
difficulty classification by Thinkfun.

Figure 8: The relation of the relative path length and difficulty rating of the par-
ticipants. All by participants solved games are contained in the plots. Note the
logarithmic scale on the vertical axis.

we consider two other approaches to formalize the concept of losing the
orientation in the state space: the average node visitation and maximum node
visitation. The underlying idea is as follows: if a player has difficulties to find
a solution path or find a path to leave one part of the network and reach
another, he or she might visit one state several times. Clearly, this does not
cover all cases, since a player can be lost without visiting any state twice, but
observing that the player visits states several times is a definite indication that
he or she lost the way. Based on this thought, the node visitation for each node
of a state space of a game for one player is defined as the number of times the
player visited this node while playing. As a measure for losing orientation,
the average node visitation and maximum node visitation are considered: the
former being the mean value of all node visitations of all by the player visited
nodes, the latter being the maximum value for one player and one game.

Figure 9 shows the maximum respectively average node visitation of all
games and all players, ordered by game or ordered by difficulty rating of
the players. At first view, one can observe that the figures — ignoring the
scale — are similar to each other which can be explained by their similar
underlying ideas. More importantly, both figures reveal a significant relation
of the node visitations to the difficulty classification of the players. Therefore,
the degree of how much a player loses orientation is a good indicator for
how difficult he or she will perceive the game. This leads to the conclusion
that a problem’s complexity does not only depend on objective properties,
but there is also a high correlation with the individual performance. Though,
the question why players lose orientation is still open.

However, the values of the maximum node visitation take on surprisingly
high values indicating that getting lost in a huge problem space is a general
issue in human problem solving. But this could, though, be easily avoided
by computer support, since recognizing a repeating configuration can be
done algorithmically without need of completely solving or even knowing
the problem. Thus, this analysis of a problem which may seem artificially
constructed leads to the suggestion of the following human-computer cooper-
ative system: the human can make use of intuition, creativity, and heuristics
to solve the problem with a problem space which may be too large for a
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Figure 9: An overview of the node visitations in all games.
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Figure 10: Relation of difficulty rating and number of counterintuitive moves.

purely algorithmical solution, and the computer gives notice of repeating
configurations, based on local computations, pointing the human to the right
direction.

4.6 Counterintuitive moves

In section 2.1, the concept of counterintuitive moves was introduced. The
experiment’s results will be analyzed under this aspect in the following
sections.

There are several aspects which makes the analysis of counterintuitive
moves complicated. The assumption is that the proposed concept of coun-
terintuitive moves are a kind of moves that players try to avoid. Therefore,
players might take longer paths in order to avoid or to put them off for as
long as possible. It might even be that players hesitate longer before they take
a move when a counterintuitive move is due. The confirmation or rejection
of these hypotheses poses some problems, though, which should be stated
first.

On the one hand, players will plan several moves ahead, therefore, the
time a player needs to take a move, is not necessarily related with the move
directly following, but with moves that might come later. On the other hand,
it might happen that players anticipate that a counterintuitive move will be
the result of a particular sequence of moves, and they will not choose this
sequence of moves, but prefer another in which the counterintuitive move is
not contained. Finally, the fact that a counterintuitive move is possible does
not mean that it makes sense to choose this move. For example, reversing a
move in which the red car is moved ahead or unblocked — which needs to be
done to solve the game — is a counterintuitive move in our sense.

We will therefore focus on the question whether the number of coun-
terintuitive moves in a solution does have an effect on the difficulty of a
game. Since the (weighted, but) absolute number of counterintuitive moves
in the state space does not have any effect on the complexity of the games,
as shown in sections 3 and 4.4, we consider the number of counterintuitive
moves contained in the individual players” solutions in relation to the indi-
vidual difficulty ratings. It is neglected whether the made counterintuitive
moves are useful or not. The number of counterintuitive moves the players
did in their solution paths (not: had to do) versus their difficulty estimation
of the game is visualized in figure 10a. A strong correlation is observed:
the more counterintuitive moves are contained in the individual player’s
solution, the more difficult the game is rated. However, the contribution of
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the absolute number of moves to the difficulty of the game is already shown,
and a longer solution will contain more counterintuitive moves. Hence, the
number of counterintuitive moves in the solution, normalized by the total
number of moves in the solution is considered in figure 10b. A correlation
to the game’s difficulty can still be observed. So, players perceive games in
which solutions they use more counterintuitive moves as more complex.

5 SUMMARY

In the described research, different approaches were used to identify factors
which contribute to the complexity of the board game Rush Hour. A purely
computational approach based on the problem space of the game revealed
the significant correlation of the difficulty of the game and the length of
its solution. Other network analytic measures did not show any significant
dependencies on the difficulty classifications. Based on a conducted study
involving 97 subjects, the finding that the length of the solution path strongly
influences the difficulty of solving the game, is confirmed. Furthermore,
several independent ideas to model disorientation in the problem space
indicate that the individual player’s performance has a greater influence
on the perception of difficulty than assumed. In addition to that, the pure
(and normalized) number of counterintuitive moves the players had in their
solutions show a correlation to the players’” difficulty rating.
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A APPENDIX
A.1 Formal description of the game and measures

THE GAME

BOARD A board is defined as a set of cells: B ={(i,j) e IxI|I={0,...,5}}. A
cell b € B can either be free or occupied.

CONFIGURATION Let C ={0,...,n} be the set of cars placed on the board.
We define a configuration belonging to a board as

k = (C,posy, hvy, cry, lex)

with posy : C = I, hvy : C = {0,1}, crx : C — T and lex : C — {2,3}.
Interpreted in the graphical sense: C is the set of placed cars on the
board. A car can be placed either horizontally or vertically, if car i € C
is placed horizontally, hvy (i) = 1 holds, otherwise hv (i) = 0. ley (i)
specifies the length of car i. cri (i) states the column number (for a
vertically placed car) respectively the row number (for a horizontally
placed car) in which the car is placed. posi(i) indicates the minimal
row index (for a vertically placed car) respectively the minimal column
index (for a horizontally placed car) in which i occupies cells.

Consider configuration k in figure 1, for the green car, it holds: posy =1,
cre =3, hv =1 und ley = 3.

VALIDITY Let o: C x B — {0, 1} be a mapping which, for a given car c € C
and a given cell b € B, returns 1 if b is occupied by c. We call a
configuration valid, if the following holds:

i) (VbeBVieC:o0(i,b) =0)V
(0(,b) =1 = o(i,b) = 0Vi #j,i, j € C).
A cell is occupied by at most one car.

ii) Let for c € C:
B¢ :={(1,j) € Blposk(c) < i< posk(c)+lek(c),j=crk(c),if hvg(c) =1;

i=cri(c), posk(c) <j < posk(c) +lex(c), if hvg(c) = 0}

. ThenVc € C:0(c,b) =1V¥b € B und o(c,b’) =0Vb’ € B\B*. A
car occupies exactly 2 or 3 consecutive cells in a row or a column.

iii) there is a red car which needs to be removed: r € C with

hvg(r) = 1
cr(r) = 2
posk(r) = max{posk(i),i€ C, hwk(i) =1 und crg(i) = 2}

The car which needs to be removed, is horizontally placed in the
row with index 2, and there is no further horizontally placed car
right of it in the same row.

In the following, when a configuration is mentionned, a valid configu-
ration is implicitly meant.

MOVE A transformation from a configuration v into a configuration w is
called a move, if the following holds:
) 3 € C:posy(j) # poswl(j)
ii) posy(i) = posw(i) Vie C, 1 #j
iii) hvy (i) =hvy(i) Vie C
iv) cry(i) = crp (i) Vie C
v) ley(i) =lew (i) Vie C
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vi) all configuration z are valid configurations with
z € {posy(j) < posz(j) < posw(j), j € C, posy(i) = pos.(i)Vie C, i #j,
Vie C:hv, (1) = hv, (i), cry(i) = crz(1), ley(i) = lez (1)}

BLOCKING CARS We define the set B (c) for a configuration v and a car
ce C as the set of cars which block ¢ from moving in positive direction
(down or right):

Bi(c)= {c'eC| (hvy(c)=hv(c)A
cr(c) =cr(cHA
pos(c’) )

(hvy(c) # hvy(c’)

POSv(C/) cry(c)

posy(c) < ery(c))}

> pos(c)

Therefore, it is the set of cars which prohibit that car ¢ can move in
positive direction to the border of the board. B, (c) is defined similarly
as the set of cars which block ¢ from moving in negative direction.
Then B, (c) = B} (c) UB, ().

SOLUTION CONFIGURATION A configuration is called solution configuration
or final configuration, if BY,(r) = 0.

SOLUTION PATH A solution path is a sequence of states vovy ... vi, whereas
vivi41 is a legal move, vy is a final configuration and v; is not a final
configuration Vi€ {0,...,1—1}

SET OF START CONFIGURATIONS The set of start configurations § contains
all configurations for which there exists a solution path.

BASICS FROM GRAPH THEORY

UNDIRECTED GRAPH An undirected graph is a tuple G = (V, E) with a set V
(so-called nodes) and a set E C V x V (so-called edges) whereas E is a
set of unordered pairs of nodes. If e = (v, w) = (w,v) € Ewithv,w €V,
we say that v and w are incident with e and call v and w neighbors or
adjacent to each other.

DEGREE Letv €V, then the degree of a node deg(v) is defined as the number
of its neighbors.

DIRECTED GRAPH A directed graph G = (V, E) with node set V has an edge
set E C V x V of ordered pairs of nodes, such that (v, w) # (w,v) fur
v,w € V. For an edge e = (v, w) we call v the predecessor of w and w
the successor of v. For a node v we distinguish between its in-degree
and its out-degree: degow((v) denotes the number of nodes for which
v is predecessor; degin (v) denotes the number of nodes for which v is
SUCCESSOT.

PATH We call the sequence of nodes vy ...vi with v; € V,i =0,...k and
ei = (vi,vit1) € Ewith i €{0,...,k—1} a path with starting node vy
and end node vy. The path has the length of k.

PROBLEM SPACE The problem space or state space for a start configuration
s € 8 is denotes as a directed graph Gs = (V, E), with V the set of all
by legal moves from s reachable configurations, and E set of all legal
moves. V can be seen as union of the disjoint sets {s}, F and I: F contains
all final configuration which can be reached from s by legal moves, I
contains all intermediate states. Therefore, a solution path is a path
through the problem space with s as starting node and a configuration
f € F as end node. We define the set FF C F as set of final configurations
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whose distance to s is minimal (i. e.the length of the shortest path from
s to f € FF). All paths with starting node s, end node f € FF and of this
length are called optimal. The out-degree of a node is the number of
possible moves from this node.

GAME Given a starting configuration s € 8. A gameis the task to find a path
in the corresponding problem space with starting node s and end node
fekF

OPTIMAL PROBLEM SPACE The subgraph G, = (V,, Eo) of G is called the
optimal problem space if V, contains all nodes and E, contains all edges
which are contained in an optimal path in the problem space.

COMPLEXITY MEASURE We define a complexity measure as a mapping
€:8 — R, which assigns each start configuration a real number.

COMPLEXITY MEASURES For a given start configuration s € § and its
corresponding problem space Gs = (V, E), we define the following complexity
measures:
SIZE OF STATE SPACE
o nodes = |V|
o nodf = |[V\ F|
o edges = |E|, whereas the reciprocal edges e = (v,w) and e’ = (w, V)
between two nodes v, w € V are counted once.
LENGTH OF SOLUTION PATH
o lsp = min{k|(s = vo ...vy) is optimal solution path}
o avlsp = ﬁ > rer Lsp(f),
whereas lsp(f) :== min{k|(s =vp ... vy = f) is optimal solution path}
for any f € F.
NUMBER OF DECISION POSSIBILITIES
o avdg = I\/lﬁ > vewnr degout (V)
© avdgop = m ZV€V0\F0 degout (V)

o avdgog = WJW 2 veVo\F, v, w) € B}

{(v,w)€EE, | weVo |
~ TH(Vu€EE | uevy] for

o br= m > vev, br(v), whereas br(v) =1
anodeveV.
NUMBER OF SOLUTION PATHS
o sp=1IHvo...vw)vo =s,vk €F,(vo...vi) is optimal solution path}|

o sppf =7k

GAME PROPERTIES
o cars = |C]
o fields =) ¢ les(c)

o me = ﬁ 2 vev\F mc(v), whereas mc(v) is the number of cars
which can be moved at least one cell up/down/left/right in
configuration v

_ 1
O MCOP = [y o] LveVo\Fo ME(V)

COUNTERINTUITIVE MOVES A move from configuration v to configuration
w is called counterintuitive, if posy (1) > posw /(1) or B (1) < [Bi(1)],
where 1 € C is the red car which needs to be removed.

o cm = M with w : E — IN, w(e) indicates in how many

optimal paths the edge e occurs, and E. = {e € E,le ist unintuitiv}

—_cm
o cmpl = Tsp
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CORR B I A E G
nodes 0.15] Mean 3613.4 3800.2 5562.0 6212.9 6380.0
SD 46457  4364.6 5932.0 7779-5 6292.9
nodf 0.152 Mean 3430.0 3646.1 5367.6 5983.0 6125
SD 44812 4257.3 5735.6 7508.8 5956.5
edges 0.110 Mean 19419.2 18332.6 27910.3 20349.7 29748.9
SD 26817.8 25978.1 32968.3 41649.2 35887.9
Isp 0.794 Mean 10.1 21.50 25.77 31 37.25
SD 3.71 7.59 6.68 7.3 3.18
alsp 0.766 Mean  13.03 24.92 29.2 34.28 41.06
SD 4.87 8.20 7.15 8.30 3.89
aodg 0108 Mean 9.32 8.35 8.88 8.27 8.44
SD 2.39 1.99 1.96 1.85 1.54
avdgop 0.088 Mean  1.600 1.720 1.677 1.750 1.706
SD 0.356 0.351 0.332 0.337 0.297
avdgog 0127 Mean 9.45 8.41 8.55 8.13 8.46
SD 2.592 1.889 1.974 1.763 1.419
br 0136 Mean  0.808 0.779 0.781 0.766 0.786
SD 0.058 0.054 0.053 0.053 0.032
s 0.070] Mean  989.1 2708 525 30051880 1055018000 40 683 410
' SD 2493.6 11028 490 159 122200 4 878 146 ooo 187 725 400
soof 0.065 Mean  174.0 1350731 23 772 900 5.8 40 272 220
SD 309.3 7978 521 151 017 900 3 113 466 ooo 187 814 300
cars 0.399 Mean 8.6 11.04 11.31 11.98 11.88
SD 2.59 2.37 1.81 1.79 1.08
fields 0.404 Mean 19.9 25.2 25.7 27.0 26.63
SD 5.25 4.70 3.48 3.37 1.79
e 0.149 Mean 4.89 5.15 5.42 5.46 5.37
SD 1.41 1.11 0.99 1.22 0.72
mcop 0125 Mean  4.773 5.03 5.12 5.29 5.29
SD 1.48 1.15 1.01 1.11 0.75
om 0.103 Mean  0.641 0.751 0.869 0.949 0.976
SD 0.608 0.819 1.020 1.174 0.791
cmpl 0255 Mean  0.065 0.039 0.035 0.033 0.027
SD 0.079 0.048 0.040 0.040 0.022

Table 3: Mean and standard deviation of the introduced measures, grouped by the
games’ difficulty rating (beginner (B), intermediate (I), advanced (A), expert (E), grand
master (G)), as well as the measures’ correlation to the game’s difficulty (Pearson
correlation coefficient).
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A2 Values of the complexity measures

A.3  For the experiment selected games

NODES EDGES LSP AVDG BR SP SPPF CARS FIELDS MC MCOP CcM CMPL
Mean 5245 25434 264 8.6 0.78  20.77-107 17.98-107 1126 255 532 5.1 1.08 0.04
SD 5882 32628 996  1.95 0.05  210.7-107  134.107 2.14 4.2 109 1.08 1.05 0.05
B
Mean 3613 19419 10.1 9.32 0.8 989.1 174.0 8.6 19.9 489 477 0.64 0.06
SD 4646 26817 3.7 24 0.06 2494 309 26 5.25 1.41 1.48 0.69 0.08
del 07B 7273 41384 12 12.1 0.88 576 18 9 18 6.6 6.7 1.1667 0.0972
103B 4821 25166 15 10.5 0.85 1536 384 10 21 643  6.06 0.9167 0.0611
del 01B 1075 5821 7 10.9 0.86 61 15.3 8 20 5.4 5.8 0 0
del 04B 451 2008 8 9.07 0.8 2 2 7 18 3.8 33 1 0.125
del o5B 2784 14786 8 10.66 0.8 575 288 11 26 6.0 6.2 0 0
del 02B 21055 119889 7 1.5 0.8 42 42 11 25 6.5 6.85 0 0
del 06B 2954 14047 8 9.58 0.87 6 6 11 26 548 625 1 0.13
1 10B 51 94 14 3.78 0.61 8 8 11 24 2.9 28 1.25 0.09
I
Mean 4139 1806 215 8.3 0.78  0.271-107 0.135-107 11.0 25.22 5.2 5.0 0.75 0.04
SD 4364 25978 759  1.99 0.053  1.103-107  0.798-107 237 4.70 1.1 1.15 0.82 0.048
2071 3182 13013 24 8.83 078  0.019-107 63840 12 28 5.65  5.79 0.3357 0.0140
3081 1338 4786 26 7.26 0.73 48840 16280 14 31 582  6.12 0.0020 0.0001
1 151 1128 3751 14 6.70 0.77 228 228 14 32 567  4.85 1.5000 0.1071
1 191 561 1604 40 5.90 0.79 123 24.6 11 25 3.7 3.96 5.5772 0.1394
A
Mean 5562 27910 2538 8.9 0.78 3.01-107  238-107 113 25.7 5.4 5.1 0.87 0.03
SD 5932 32968 668  1.96 0.053  15.9.107 15.1-107 1.81 3.48 0.99  1.01 1.0 0.04
126A 196 483 22 5.0 0.82 8 8 9 20 264 2.88 4.5000 0.2045
123A 4671 19068 29 8.58 0.74 3782 3782 14 30 612  5.08 1.4804 0.0510
4 18A 8052 40360 29 10.2 0.79 0.21-107 21480 10 24 5.6 5.4 0.6562 0.0226
122A 530 1514 33 5.9 0.73 468 78 14 31 473 4.65 5.6667 0.1717
E
Mean 6213 29350 31 8.27 0.77  1055-107 5.84 11.98 2696 546 529 0.95 0.033
SD 7780 41649 726  1.85 0.05  487.8-107 311.3.107 1.79 3.37 122 1.1 117 0.04
del 39E 754 2231 32 6.0 0.71 21600 7200 12 27 439 410 0.0125 0.0004
228E 75 106 31 2.85 0.63 1 1 13 29 226 252 4.0000 0.1290
325E 6262 30793 29 10.41 0.82 18240 3040 11 27 598 558 0.9000 0.0310
132E 23009 113755 48 10.02 0.80  2058-107  2058-107 13 29 6.94 597 2.3959 0.0499
1 38E 3493 13866 50 8.02 0.70 127107 21107 13 29 574  6.66 0.2652 0.0053
G
Mean 6380 29749 373 8.44 0.79 41107 4.0-107 11.88  26.63 537 528 0.98 0.03
SD 6293 35888  3.18  1.54 0.03 18.8-107 18.8-107 1.08 1.79 072 075 0.79 0.02
237G 5824 23352 41 8.21 0.78 0.11-107 276080 11 25 505  5.20 0.8796 0.0215
del 55G 1583 5129 41 6.78 0.77 2688 448 11 25 432 3.95 2.5268 0.0616
236G 1062 2992 38 5.76 0.75 12320 3080 12 26 393 4.03 0.1312 0.0035

Table 4: The measure values of the 24 games which were selected for the experiment.
Striking values are highlighted in red. Mean value and standard deviation (SD) are

shown for each complexity class.
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