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A B S T R A C T

In various research �elds, methods from complex network analysis have been

applied in order to analyze complex systems. There are network representations

for which the idea of traversing the network arises naturally, consider for exam-

ple travels in a transportation or road network, packets being routed through

the Internet, or humans navigating through a problem’s state space. Although

the concept of paths in networks is intuitive, to our knowledge, there has not

been any approach to compare paths by similarity in order to cluster more simi-

lar paths in groups. Therefore, this work presents an analysis of path similarity

and distance measures and a �rst attempt of clustering real path data by simi-

larity. Aiming at deriving appropriate path similarity and distance measures, we

identify characteristic features of paths a similarity measure can be based on as

well as general properties a similarity measure for paths should ful�ll. Guided

by the identi�ed features, we propose several similarity and distance measures

for paths in networks and analyze the proposed measures for their properties.

Furthermore, we use path data collected on a web-based learning tool where the

paths represent the navigation of humans through the problem state of a game

while solving the game. We compute the similarity value for each of the proposed

measures for each pair of paths and cluster the paths by their similarity using an

hierarchical clustering approach.

Z U S A M M E N FA S S U N G

Methoden der Netzwerkanalyse kommen in den unterschiedlichsten Forschungs-

bereichen zur Anwendung um komplexe Systeme zu analysieren. In einigen

Modellierungen von Systemen als Netzwerke erscheint das Konzept, das Netz-

werk als Transportmedium zu verwenden und einen Weg durch das Netzwerk

zu �nden, natürlich. Als Beispiele können Reisen in Transport- oder Straßen-

netzwerken, Navigation von Benutzern auf Webseiten oder andere menschliche

Navigation in Netzwerken genannt werden. Obwohl das Konzept der Wege

durch Netzwerke ein intuitives ist, hat es unseres Wissens nach bislang keinen

Ansatz gegeben, Pfade in Netzwerken zu vergleichen und sie nach Ähnlichkeit

zu gruppieren. Die vorliegende Arbeit beschäftigt sich deshalb mit möglichen

Ähnlichkeitsmaßen für Pfade in Netzwerken, indem zunächst Eigenschaften von

Pfaden identi�ziert werden, auf deren Grundlage wir Ähnlichkeitsmaße entwi-

ckeln. Weiterhin postulieren wir allgemeine Eigenschaften, die Ähnlichkeits-

maße für Pfade erfüllen sollten und prüfen die vorgeschlagenen Maße auf diese

Eigenschaften. Im zweiten Teil der Arbeit verwenden wir die vorgestellten Maße,

um Pfade mit hierarchischem Clustering in Gruppen von ähnlichen Pfaden zu

partitionieren und die Maße zu evaluieren.
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1
I N T R O D U C T I O N

1.1 motivation

In recent years, the analysis of complex networks has been applied in various dis-

ciplines: in almost every area of research, there are concepts or systems which

can be modeled as complex networks in order to use methods from complex

network analysis for investigating properties of the system. There are classical

examples of the application of network analysis in the area of biology, chemistry,

or sociology. Not in all, but in some of these systems modeled as networks, the

idea of traversing the network arises naturally. Consider for example travels in

transportation networks, packets being routed through the Internet, or a user

navigating on a web page by following the links. All the mentioned entities use

the underlying network as environment which they can traverse. By traversing

the network, they create paths from one “place” in the network to another. Al-

though the idea of paths in networks is intuitive and well-known, there has not

been any research aiming at comparing paths in networks: given two di�erent

paths in the same network, what are the necessary conditions that need to be

ful�lled such that the paths can be considered as similar or very di�erent? How

can we measure the similarity or distance of two paths in a network?

Apart from academic interest, being able to quantify the similarity of paths in

a network might be interesting for several reasons: having a similarity measure

for paths at hand, it might be possible to apply clustering algorithms in order to

partition paths in groups of similar paths. This is especially of importance when

a large amount of paths in a network is considered and it is necessary to choose a

representative subset of paths. A desired property is then to have one or several

typical paths for each group of paths.

Another scenario in which the similarity of paths can be used, might be recom-

mender systems when the order of purchased or clicked items is of relevance. An

example for this are e-learning systems in which the order in which the learning

materials are viewed by the student is as important as the materials themselves.

A student browsing on a e-learning platform creates a path of viewed documents

and a recommender system might suggest documents to the student by compar-

ing the student’s learning path with the paths of other students and evaluating

the students’ learning success.

The above mentioned scenarios are only two examples in which the concept of

a path similarity could of use. Therefore, the present thesis proposes an approach

how to measure the similarity of paths in networks.

1



2 introduction

1.2 scope of this work

The present work aims at presenting a �rst approach for comparing paths in

graphs and cluster them by similarity. Therefore, this thesis consists of two main

parts, one is concerned with the development of appropriate similarity and dis-

tance measures for paths in networks, the second describes an approach of clus-

tering real path data based on their similarity measures and comparing the clus-

tering results from each similarity measure. More detailed, the present work is

structured as follows: section 1.3 provides the de�nitions and notions which are

needed in the further chapters, before chapter 2 will give an overview of existing

work about similarity measures in general and especially of sequences. Chapter 3

then deals with possible similarity measures for paths in networks and their prop-

erties. Thus, section 3.1 proposes general properties which should be satis�ed by

a path similarity measure, before section 3.2 describes possible features of paths

on which the development of a similarity measure could be based on. Section 3.3

uses the proposed path features to describe several di�erent path similarity and

distance measures which are analyzed for their properties in section 3.4. This

concludes the �rst main chapter of the present work.

The second main chapter is chapter 4 which describes the clustering of real

path data based on their similarity measure values. Section 4.1 gives an overview

of existing clustering methods in order to justify the chosen clustering method

before section 4.2 describes the source and the structure of the available path

data. The values for each of the proposed similarity and distance measures are

computed for each pair of paths and an hierarchical clustering approach is used

to group similar paths in clusters. The methods, the results of this approach as

well as the evaluation of the similarity measures is provided in section 4.4 before

chapter 5.1 gives a summary of the work and outlines possible future work.

1.3 definitions

1.3.1 Basic de�nitions

Most of the given de�nitions and notations are following Krumke and Nolte-

meier [25].

graph A graph G is a tuple G = (V, E) with a set of nodes V and a set of

edges E ⊆ V×V. For simplicity and without loss of generality, we assume

V ⊆ N. It can be then assumed to have an ordering on the nodes by taking

the natural ordering onN. A graph is �nite if V and E are both �nite sets.

If E contains only unordered pairs of nodes {v, w} with v, w ∈ V, the

graph is called undirected. If E contains ordered pairs (v, w), the graph is

called directed.

In a directed graph, for an edge e = (v, w), we call v the source node of

e and w the target node of e. We de�ne the functions α : E → V and

ω : E→ V which yield the source respectively the target node of an edge

(α((v, w)) = v and ω((v, w)) = w). In an undirected graph, for an edge

e = {v, w} with v ≤ w, we de�ne α(e) := v and ω(w) := w.
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An edge e with identical source and target node, i.e. α(e) = ω(e), is called

self-loop. If E is a multiset, i.e. there are edges e, e′ ∈ E with e , e′ and

α(e) = α(e′) and ω(e) = ω(e′), G is called a multiple graph.

If G is not multiple and does not contain any self-loops, G is called simple.

In the following, only �nite, simple and undirected graphs are considered.

incidence, adjacency, degree An edge e ∈ E is called incident to

a node v ∈ V if α(e) = v or ω(e) = v. If there is an edge

e = (v, w) ∈ E, the nodes v and w are said to be adjacent to each other

or to be neighbors. The number of neighbors of a node v is called de-
gree of v, i.e. in undirected graphs deg(v) := |{w ∈ V|{v, w} ∈ E}|.
In directed graphs, we distinguish between the in-degree and the

out-degree, i.e. the number of ingoing edges and the number of

outgoing edges of a node v: deg−(v) := |{w ∈ V|(w, v) ∈ E}| and

deg+(v) := |{w ∈ V|(v, w) ∈ E}| and deg(v) := deg+(v) + deg−(v).

path A path p in a graph G is a �nite sequence p = (v1e2v2 . . . vk−1ekvk) with

k ∈ N, v1, . . . , vk ∈ V and ei = {vi−1, vi} ∈ E for all i ∈ {2, . . . , k}.
Because only simple graphs are considered in the following, a path is

uniquely determined by its node sequence, and therefore, the notation of

a path can be simpli�ed to p = (v1v2 . . . vk) with the same requirements

as above. Let V(p) = {v1, . . . , vk} and E(p) = {e2, . . . , ek} denote the

set of nodes and the set of edges which are contained in p, respectively. If

a node v or an edge e is contained in a path p, we write v ∈ V(p) and

e ∈ E(p), or also short v ∈ p and e ∈ p.

For a path p, the functions α and ω can be de�ned accordingly: α(p) := v1

and ω(p) := vk yield the start and end node of p. For the sake of better

readability, we sometimes write αp and ωp instead of α(p) and ω(p).

Any subsequence (viei+1 . . . ei+jvi+j) of p with 1 ≤ i ≤ k and j ≥ 0 and

i+ j ≤ k is called a subpath of p. We denote this subpath by pi,j
. As special

case, we de�ne pi,i−1 := () as the empty path.

We say that p induces an ordering �p⊆ V(p) × V(q) on a subset of the
nodes by vpi �p vpj i� pi ≤ pj.

path properties The length |p| = k− 1 of a path p is the number of edges

in p. It holds |p| ≥ |E(p)|. A path is called simple if none of the edges is

used more than once, i.e. ei , ej for all i, j ∈ {2, . . . , k} with i , j. For

a simple path p, |p| = |E(p|) holds. A path is called elementary if it is

simple and vi , vj for all i, j ∈ {1, . . . , k}, hence if no edge and no node

is contained more than once in p; only the same start and end node are

allowed, i.e. α(p) = ω(p). In the case that α(p) = ω(p), p is called a

cycle. Figure 1 shows an example in which the path p = (1, 2, 3, 1, 4) is

simple, but not elementary.

Let Pv1→vk be the set of all paths p with α(p) = v1 and ω(p) = vk. Let

PV =
⋃

vi ,vj∈V Pvi→vj the set of all paths in graph G. Let P≤l
V and P=l

V
the set of paths p in G with |p| ≤ l and |p| = l, respectively.
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connectedness, diameter For two nodes v, w ∈ V, let their distance
d(v, w) be the length of the shortest path between v and w:

d(v, w) = min {|p| | p ∈ Pv→w}

In the case that there is no path from v to w, hence Pv→w = ∅, it is set

d(v, w) := ∞. If d(v, w) = 1, v and w are adjacent.

An undirected graph is called connected if there is a path between any two

nodes v, w ∈ V, i.e. ∀v, w ∈ V, it holds d(v, w) < ∞. A directed graph

is called strongly connected if, for any two nodes v, w ∈ V, there is a path

from v to w and a path from w to v. A directed graph is called (weakly)
connected if, for any two nodes v, w ∈ V, there is a path from v to w or

there is a path from w to v.

The diameter of a graph G is de�ned as diam(G) := maxv,w∈V{d(v, w)},
hence the longest shortest path between any two nodes in the graph.

path operations In the following, several operations on paths are de�ned.

The operation of path concatenation of paths in a graph G is de�ned as

⊕ : PV ×PV → PV with

((vp1 . . . vpl ), (vq1 . . . vqm)) 7→ (vp1 . . . vpl vq1 . . . vqm) if (vpl , vq1) ∈ E

(v, (v1 . . . vl)) 7→ (vv1 . . . vl) if (v, v1) ∈ E

((v1 . . . vl), v) 7→ (v1 . . . vlv) if (vl , v) ∈ E

(v, w) 7→ (vw) if (v, w) ∈ E

For the de�nition of path inversion, the notion of an edge inversion is re-

quired. An edge e = (v, w) ∈ E or e′ = {v, w} ∈ E is inverted by

inv(e) := (w, v) if (w, v) ∈ E or inv(e′) = e′ in an undirected graph.

Path inversion is then de�ned as inv : PV → PV with inv(p) :=
(vkinv(ek) . . . v2inv(e2)v1) for a path p = (v1e2v2 . . . vk−1ekvk). Note

that in a directed graph, inv(p) does not need to exist if there is an edge

ei ∈ p for which the inverted edge does not exist in G, i.e. inv(ei) < E. In

undirected graphs, the inverted path always exists.

similarity measure A similarity measure over a set of objects X is a real-

valued function σ : X× X → R which indicates how similar two objects

of X are. The more similar two objects are, the higher the value of the sim-

ilarity function should be. It is di�erentiated between unnormalized and

normalized similarity measures: while σ can take arbitrary high (positive)

Figure 1: Example of a simple, but not elementary path.
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values, the normalized similarity measure is constrained to the interval

[0, 1], i.e. σN : X × X → [0, 1]. For any similarity measure σ, a transfor-

mation to the interval [0, 1] can be achieved by

σN(x, x′) =
σ(x, x′)−miny,y′∈X σ(y, y′)

maxy,y′∈X σ(y, y′)−miny,y′∈X σ(y, y′)

for x, x′ ∈ X. The present work will consider similarity measures over

PV .

distance measure and metric A distance measure over a set of objects X
is a real-valued function δ : X×X → Rwhich indicates the dissimilarity

or distance of two objects of X. The more dissimilar or distant two objects

are, the higher the value of δ. Also for distance measures, it is di�erentiated

between normalized and unnormalized distance measures: δ(x, y) ∈ R
and δN(x, y) ∈ [0, 1] for all x, y ∈ X. Any distance measure can be trans-

formed to a normalized distance measure by the transformation described

above:

δN(x, x′) =
δ(x, x′)−miny,y′∈X δ(y, y′)

maxy,y′∈X δ(y, y′)−miny,y′∈X δ(y, y′)

for x, x′ ∈ X. A distance function δ is called a distance metric if for any

x, y, z ∈ X the following conditions are satis�ed:

(i) δ(x, y) ≥ 0 (non-negativity)

(ii) δ(x, y) = 0⇔ x = y (coincidence)

(iii) δ(x, y) = δ(y, x) (symmetry)

(iv) δ(x, z) ≤ δ(x, y) + δ(y, z) (triangle inequality)

For each normalized distance measure δN , there is an associated normal-

ized similarity measure and vice versa. It is obtained by any transforma-

tion function f : [0, 1] → [0, 1] which is monotonically decreasing. For

example, f might be de�ned as

σN(x, y) = f (δN(x, y)) := 1− δN(x, y)

or as σN(x, y) = f (δN(x, y)) :=
1

δN(x, y) + 1

or as σN(x, y) = f (δN(x, y)) := e−δN(x,y).

Figure 2: For illustration of path concatenation: In the top example, the red and the green

path are concatenated by the black dashed edge, in the second example, a single node is

concatenated to the blue path, in the third example, two single nodes are concatenated

by the dashed edge, building then a path of length 1.
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The present work consider distance measures and metrics over paths,

hence over PV .

clustering Given a �nite set of objects X and a distance measure δ or a sim-

ilarity measure σ over X, a function f is called a clustering function if

it returns, given X and δ or σ respectively, a partition of X. Therefore,

the task of a clustering function is to group the given objects based on the

similarity between them. Di�erent clustering functions and algorithms are

discussed in 4.1.

1.3.2 Notation

In the upcoming chapters, we use a notational convention. If not de�ned oth-

erwise at some points, by default, the following symbols are meant as de�ned

here:

◦ Let G = (V, E) be the graph in which the considered paths are.

◦ Let i, j, k, l, m, n ∈ N.

◦ Let v, w, x with any index be nodes of graph G and e, e′ with any index be

edges.

◦ Let p, p′, q, q′, r, r′ ∈ PV be paths: p = (vp1 ep2 vp2 . . . epk vpk) and q =

(vq1 eq2 vq2 . . . eqm vqm) and r = (vr1 er2 vr2 . . . erl vrl ).



2
R E L AT E D W O R K

To our knowledge, there is no existing work which analyzes the similarity of

paths in graphs, but there is a broad variety of research about similarity mea-

sures in general and measuring the similarity of sequences in several application

domains. In the area of graphs and networks, there are multiple approaches to

measure the similarity or equivalence of nodes, but none which is concerned

with the similarity of paths in graphs. In the following paragraphs, existing re-

search approaches about similarity measures in general and in particular for se-

quences are presented as well as other work related to the research described in

this thesis.

2.1 work on similarities and clustering

The concept of similarity or distances is an essential one in many disciplines and

�elds. Therefore, there are countless works about similarity and distance mea-

sures in general, and special similarity measures for particular application areas,

as well as analyses of the measures’ properties, their applicability and perfor-

mance. Especially in some tasks in machine learning and data analysis, where

the goal is to �nd meaningful groups of objects, it is a crucial task to �nd an

appropriate measure of similarity. In order to be able to group objects in mean-

ingful cluster, it is necessary to de�ne a similarity or distance on the set of pairs

of objects. The challenge is that the objects do not need to be numerical, but can

come from any context and have any structure. In machine learning, there are

several approaches to deal with this problem.

In the following, a small selection of existing work is presented. The selection

of works aims at showing a broad spectrum of how a similarity measure can be

derived in di�erent areas of applications. The methods of measure development

is rather in the focus of the following section than the concrete derived measures.

Therefore, the discussion starts with two axiomatic approaches – one for clus-

tering and one for a similarity measure – in order to show how a measure or a

clustering function can be found by stating assumptions in the very beginning

of the development from which the measure is then derived. We then present a

totally di�erent approach which delegates the development of a distance mea-

sure to a learning algorithm. As an example of the development of a similarity

measure in a speci�c application domain, we present the work about a similarity

measure for two-dimensional shapes in the area of image processing.

7



8 related work

For an overview of common existing similarity measures and their possible

properties, see for example Gower [11]. An introduction to similarity and dis-

tance measures in data mining is given by Pang [43].

2.1.1 Axiomatic approaches to similarity and clustering

An axiomatic approach for deriving a similarity measure is used in the work of

Lin [32] who presents an approach which does not start in the context of an ap-

plication domain and derives a similarity measure for the application of interest,

but rather proceeds the other way around: he de�nes the concept of similarity

from an abstract point of view by stating general intuitions and assumptions

about how a similarity measure should behave, independently of the domain

and without using any assumptions or constraints of the domain for stating the

measure. He names two main reasons for this top-down approach instead of an

application-driven approach: universality and theoretical justi�cation. The �rst

postulates that the de�nition of a similarity should be applicable to objects from

any domain, the only prerequisite in this work is that the domain has a prob-

abilistic model, i.e. the probability distribution of the objects in the domain is

known. The latter requires – in order to justify the choice of a similarity mea-

sure – that the development of a measure should happen in a top-down approach

in the sense that it does not start from a formula, but rather a set of assumptions

is stated how the desired measure should behave. In the ideal case, the similarity

measure follows from the assumptions directly. Lin states three intuitions about

how a similarity for any kind of objects should behave and derives six assump-

tions from them. Having formulated the assumptions, an information-theoretic

similarity which satis�es the required assumptions can be derived. The three in-

tuitions are the following: (i) the similarity between two objects should be larger

if the two objects share more commonality while (ii) the similarity between two

objects should be smaller if they have more di�erences, (iii) the similarity of two

objects should reach its maximum if the objects are identical – no matter how

much commonality they share. From this basic intuitions which are met by a

number of existing similarity measures, Lin formulates six information-theoretic

assumptions. From these assumptions he can then prove that the function which

satis�es the assumptions is given by

sim(A, B) =
I(common(A, B))

I(description(A, B))
,

i.e. the ratio of the amount of information contained in the commonality of the

objects A and B, and of the amount of information contained in the description

of A and B, where the amount of information of a statement is measured by the

negative logarithm of the probability of the statement.

In the experimental section of the paper, Lin can show that the derived simi-

larity measure satis�es universality which was stated as goal, by demonstrating

its applications in di�erent domains, for example string similarity or semantic

similarity. The theoretical justi�cation which is stated as second goal is satis�ed

by the used methodology.
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A methodically similar approach with a di�erent result and from a di�erent

topic was proposed by Jon Kleinberg in his impossibility theorem of clustering

functions [23]. In his article from 2003, he introduces an axiomatic framework

for algorithms for clustering objects in which he proposes three properties one

could require from a clustering function. But while in the work of Lin [32], the

made assumptions lead to a similarity measure, Kleinberg can show that there

does not exist any clustering function which satis�es all three formulated prop-

erties. Though, interestingly, functions which obey two of the three properties or

relaxations of the properties are well-known algorithms which are widely used

in several application domains.

As already de�ned in section 1.3, the idea of clustering is to partition a given

set of objects into subsets such that these subsets satisfy certain properties. The

set of objects to be partitioned is given as S = {1, 2, · · · , n}, a distance function
is de�ned on any pair of the n objects: let d : S× S → R be the re�exive and

symmetric distance function such that for any i, j ∈ S, it holds d(i, j) ≥ 0 and

d(i, j) = 0 ⇔ i = j and d(i, j) = d(j, i). A clustering function is then de�ned

as function f which gets a set S and a distance function d on S and returns a

partition Γ of S which are the clusters of S.

The properties that Kleinberg suggests for a clustering function are as follows:

Scale-Invariance A clustering function should be robust against any scaling of

the distance function by a constant factor: For any distance function d and

any α > 0, it is required f (d) = f (α · d), where α · d := αd(i, j) for any

i, j ∈ S.

Richness A clustering function should be rich in the sense that every possible

partition of S is a possible output of f – if the distance function can be

chosen accordingly: Let Range( f ) denote the set of all partitions that f
can produce for any distance function d, then Range( f ) should be equal

to the set of all partitions of S.

Consistency If f produces a partition Γ of S with the distance function d, the

clustering function should be insensitive against the following modi�ca-

tion of the distance function leading to d′: the distance between any pair

of elements which are in the same cluster in Γ is decreased, the distance

between elements which are in di�erent clusters in Γ is increased. Then,

f should produce the same partition with d as well as with d′. Formally,

d′ is de�ned as a Γ-transformation of d, if ∀i, j ∈ S belonging to the same

cluster of Γ, it holds d′(i, j) ≤ d(i, j), and ∀i, j ∈ S belonging to di�erent

clusters of Γ, it holds d′(i, j) ≥ d(i, j). The requirement for f is then: Let d
and d′ be two distance functions. If f (d) = Γ, and d′ is a Γ-transformation

of d, then f (d′) = Γ.

Kleinberg can then prove that for each n ≥ 2, there is no clustering func-

tion which satis�es Scale-Invariance, Richness and Consistency. Furthermore,

he considers some relaxations of the three properties and describes how well-

known clustering methods, for example centroid-based clustering methods or

single-linkage clustering relate to the relaxed properties.

Coming back to the challenge of �nding an appropriate similarity or distance

measure, two further works which deal with this topic are presented. Xing et

al. [46] from the �eld of machine learning and statistics describe that having a
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good distance metric at hand is a crucial point when objects need to be clustered

according to this metric. The problem is that there are almost always several plau-

sible ways to cluster objects, but not all clustering results are meaningful for the

user in the end. Therefore, in order to get meaningful clustering results, the simi-

larity measure is often manually changed to capture the most important aspects

which should be re�ected by the measure. For this reason, they propose a system-

atic way to identifya good similarity measure, by giving an algorithm which can

learn a similarity measure for objects of a given domain. The input data which

is used to learn the measure is a set of pairs of objects which are considered as

similar by the user. Hence, the user speci�es by examples which objects the mea-

sure should rate as similar. The algorithm then learns a distance metric which

respects the given similar objects and can, after the learning phase, compute the

distance value for any two objects from this domain. Xing et al. propose the devel-

opment of their learning algorithm as the formulation of a convex optimization

problem which can be solved by standard e�cient, local-optima-free methods.

Their results on arti�cial and real-world data look quite promising.

As an example from a speci�c application domain in which a good similar-

ity measure was needed, the work of Latecki and Lakämper about the similarity

of shapes is presented [29]. This work from the area of image processing de-

scribes the development of a similarity measure for two-dimensional shapes, i.e.

silhouettes of objects. The main requirement for the similarity measure is its

consistency with the principles of human visual perception: the similarity mea-

sure should rate shapes as similar which are rated as similar by humans even

if the objects are mathematically di�erent. Further requirements for the desired

similarity measure are

◦ it should be robust against noise in the representation of the shapes, which

might for example come from digitization errors,

◦ it should respect signi�cant visual parts of the objects,

◦ it should be independent of orientation, scale, and position of the objects,

◦ it should not be restricted to a subset of possible shapes, i.e. it should be

applicable to all shapes.

Latecki and Lakämper base their similarity measure on the idea of �nding a func-

tion which establishes a correspondence between the visually signi�cant parts

of the two shapes of interest. The similarity measure then compares the values

of an associated function (the so called tangent function) of the corresponding

parts of the shapes. They can prove that their proposed similarity measure satis-

�es the requirements they stated and illustrate in examples that their similarity

measure gives results which are quite consistent with the principles of human

visual perception of objects.

2.1.2 Similarities in graphs and networks

In the context of graphs and networks, we are only aware of several works about

similarity of nodes, for example [4, 31, 19]. For an overview of similarity and

distance measures in networks, see Akcora and Ferrari [1].

In their work of 2002, Jeh and Widom propose the SimRank measure as a

structural-context similarity for measuring the similarity of objects from any
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domain – as long the objects have relationships between each other, i.e. can be

considered as nodes in a graph. The main idea of their similarity measure is that

objects should be considered as similar if they occur in similar contexts which is

a self-referential concept.

Leicht et al. [31] propose anotherapproach, motivated by the concept of so-

cial networks: two vertices in a social network can be considered as similar if

their neighbors in the network are similar. The most basic idea to capture this

idea is to count the number of common neighbors for two nodes and take this

value as similarity score. Formally, for a node v ∈ V, let Γ(v) be the set of

neighbor nodes, then a simple similarity of the two nodes vi, vj ∈ V could be

|Γ(vi) ∩ Γ(vj)|. Though, this measure is not quite fair, because it is more likely

that nodes with a higher degree will have an absolutely higher score than nodes

with a smaller degree. However, for example, two nodes with ten neighbors each

and ten common neighbors should get a higher similarity score than two nodes

with 1000 neighbors each and 20 common neighbors. For this reason, it might be

reasonable to normalize the measure for which there are several possibilities:

◦ normalize by the total numbers of neighbors of the two nodes which yields

|Γ(vi) ∩ Γ(vj)|
|Γ(vi) ∪ Γ(vj)|

and is known as Jaccard index [15].

◦ normalize by the the square root of the product of the cardinalities of the

two neighbor sets which yields

|Γ(vi) ∩ Γ(vj)|√
|Γ(vi)| · |Γ(vj)|

and is known as cosine similarity [41].

◦ normalize by the minimum of the cardinalities of the two neighbor sets:

|Γ(vi) ∩ Γ(vj)|
min{|Γ(vi)|, |Γ(vj)|}.

All of these measures are well-known and commonly used, however, the authors

propose that two nodes might be considered as similar even if they do not share

any common neighbors. As an example they mention the social networks of

two companies in which the CEOs of both companies should be considered as

similar to each other because of their position in the network – although their

nodes might not share any neighbors. Based on this intuition, Leicht et al. use the

idea of regular equivalence of nodes which is a similar concept to the SimRank
measure of Jeh and Widom [19]: two nodes are said to be similar if they are

connected to nodes which are themselves similar, and – as termination criterion

for the recursion – a node is similar to itself. The measure resulting from these

two assumptions can be formulated in matrix form which is why the respective

algorithm can make use of standard linear algebra methods.

The basic intuition is the same as in the approach of Jeh and Widom, but in the

derivation of the formulas, there is a signi�cant di�erence: both measure formu-

las include the paths between the respective nodes, though, the proposed formula
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of Jeh and Widom only considers paths of even length between the nodes which

yields a similarity that is 0 for nodes connected only by paths of odd length. This

counterintuitive behavior of the measure is avoided in the measure of Leicht et al.

Leicht et al. evaluate their proposed measure on one arti�cial network and

two networks from real-world data which gives intuitively meaningful results.

2.2 work on seqence similarity

As mentioned above, we are not aware of any work dealing with measuring the

similarity or distance of paths in graphs or networks, however, there has been

proposed many methods for comparing sequences of objects, two- and three-

dimensionaltrajectories, click streams,or paths in documents from a broad range

of �elds and manifold types of approaches. We will present a few of them in the

following section.

2.2.1 Comparing object trajectories

Thereis a wealth of literature oncomparing and classifying trajectories of objects

moving in two- or three-dimensional space, for example [44, 20, 5, 48, 35]. The

basic setting for all these works is the following: the video recordings from a

surveillance camera observing a �xed outdoor scene is processed by extracting

the trajectories which are made by the objects moving through the scene. For

each observed object, a trajectory – a sequence of the object’s positions at di�er-

ent time points – is extracted from the video recordings. The trajectories might

be two- or three-dimensional. The goal is to build a system which is able to au-

tomatically extract, compare and classify the trajectories in order to distinguish

between regular and irregular paths. For example, the camera is observing an

area where some part must not be entered.If it happens that an object enters this

area, the system should give an alert. For the comparison and classi�cation of

the trajectories, a similarity measure for trajectories is needed. However, all the

approaches need to take into account that the available data contains a lot of

noise and errors due to the extraction of the paths from the image data.

The goal of Vlachos et al. [44] in their work is to achieve an automatic classi-

�cation of trajectories by a nearest neighbor classi�cation for which a distance

function for trajectories and an e�cient indexing scheme is needed. More con-

cretely, they assume to be given a database of trajectories, each given as a se-

quence of consecutive locations in a multidimensional space, and a query which

is not already in the database. Goal is to �nd the trajectory in the database which

is closest to the query trajectory. They formulate the following requirements for

a desired similarity or distance function:

◦ it should be robust against noise in the data. It is probable that satisfying

this requirement will prevent the measure to ful�ll the triangle inequality

because being robust against noise means that the measure will ignore

some of the most dissimilar parts of the trajectories which might violate

the triangle inequality.

◦ it should be robust against variations in time: since the trajectories are

given as coordinates with time information, the distance function should
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be robust against varying time intervals, di�erent sampling intervals or

di�erent speeds of the objects.

◦ the distance function should be invariant against translation in space, i.e.

recognize similar movements even if they are in di�erent space regions, for

example shifted by a constant which might be due to di�erent centerings

of the camera.

◦ the distance function should be able to handle trajectories of di�erent

lengths.

◦ it should be computationally feasible to compute the distance measure for

two trajectories.

Following these requirements, Vlachos et al. propose a similarity based on the

longest common subsequence of two trajectories which is de�ned as follows: For

two trajectories A and B of moving objects with A = ((xa1 , ya1), . . . , (xan , yan))

and B = ((xb1 , yb1), . . . , (xbm , ybm)), where (xi, yi) are the coordinates of the ob-

ject, the head of a sequence of length n is de�ned as the �rst n− 1 elements of

the sequence, hence Head(A) := ((xa1 , ya1), . . . , (xan−1 , yan−1)). Furthermore,

let Last(A) := (xan , yan) and πx((xai , yai)) := xai and πy((xai , yai)) := yai as

well as length(A) = n.

With these notations, the LCSS-distance of two trajectories A and B can be

de�ned with two parameters δ and ε as follows: With an integer δ and a real

number 0 < ε < 1,

LCSSδ,ε(A, B) :=



0 if A or B is empty

1 + LCSSδ,ε(Head(A), Head(B))

if |πx(Last(A))− πx(Last(B))| < ε

and |πy(Last(A))− πy(Last(B))| < ε

and |length(A)− length(B)| ≤ δ

max{LCSSδ,ε(Head(A), B), LCSSδ,ε(A, Head(B))}

otherwise

The LCSS tries to match the two sequences by starting at the end of the se-

quences. If the second case is satis�ed, two elements of the sequences canbe

matched, the LCSS is increased by one and the matched elements are not con-

sidered anymore. Here, the parameter ε controls how close in space the two

elements must be to each other such that they are considered as close and will

be matched.The parameter δ allows the two matched elements to be shifted in

time. If the last two elements of the sequences cannot be matched, one of them is

left unmatched and the next but last element is considered. Hence, LCSS counts

the number of matched elements in the sequences.

A �rst similarity measure based on the LCSS model is

S1(δ, ε, A, B) =
LCSSδ,ε(A, B)

min{n, m}

which indicates the ratio of number of matched elements to number of elements

that could have been matched in the ideal case.
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In order to recognize parallel movements in di�erent space regions, they ex-

tend their measure by allowing a linear shift of the trajectories in all space

dimensions and choose the shift which maximizes similarity. This yields the

measure S2 which allows the trajectories to be linearly shifted in the space.

The family F of translations is de�ned as all functions fc,d with fc,d(A) =

((ax,1 + c, ay,1 + d), . . . , (ax,n + c, ay,n + d)). With this family of translations,

the re�ned similarity measure

S2(δ, ε, A, B) = max fc,d∈FS1(δ, ε, A, fc,d(B))

is obtained. They can show that they only need to consider a �nite number of

translations in order to �nd the tranlsation which maximizes the similarity and

this �nite set of translations can be e�ciently enumerated. This result is based

on the observation that each shift with a translation function leads to a certain

LCSS value from which there is only a �nite number of di�erent possible values.

Vlachos et al. compare the clustering performance with their method with the

clustering results with the euclidean distance and the dynamic time warping dis-

tance function on two di�erent data sets and �nd that their method outperforms

the previous methods in terms of accuracy e�ciency, especially when the used

data contain noise.

Buzan et al. [5] extend the approach from Vlachos et al. [44] and they are able

to cluster the trajectories into groups of similar ones using an hierarchical clus-

tering approach. Their method seems to, at least by visual inspection, yield mean-

ingful groups of trajectories.

While the above presented approaches both use the LCSS as similarity mea-

sure and only consider spatial features of the trajectories, Junejo et al. [20] are

the �rst ones which also take other features of the trajectories into account in

order to group them by similarity. They present an algorithm which is able to dis-

tinguish trajectories which are spatially dissimlar and also trajectories which are

spatially close, but di�erent in their spatio-temporal features (as speed of the ob-

ject or curvature information, including discontinuities in velocity, acceleration,

and position of the trajectory).

In the training phase of their algorithm, the algorithm is given a su�ciently

great amount of object trajectories T = {t1, . . . , tm}, extracted from video

recordings of a stationary camera. If an object i was tracked through n frames,

the object’s trajectory is given as ti = {(xi1 , yi1), . . . , (xin , yin)}, whereas the

tuples contain the two-dimensional image coordinates of the object in the corre-

sponding frame. Each ti ∈ T is smoothed by a moving average �lter to remove

outliers and reduce the noise.

As distance measure for two trajectories tj and ti, the Hausdor� distance

dHausdor f f is used which is de�ned as

dHausdor f f (ti, tj) = max{d(ti, tj), d(tj, ti)}

with

d(ti, tj) = maxa∈ti minb∈tj‖a− b‖

with an appropriate norm ‖ · ‖. Therefore, the Hausdor� distance takes the

largest (smallest) distance of any two points of the trajectories as measure how

similar respectively distant two trajectories are.



2.2 work on seqence similarity 15

One advantage is its capability to compare trajectories of di�erent lengths, a

signi�cant disadvantage is that outliers or noise will considerably in�uence the

measure, even if the trajectories are close in all other points.

After clustering the training trajectories into groups of similar trajectories, a

spatial envelope (or corridor) is calculated for each cluster which encloses all

trajectories of the group and represents the spatial extent of all trajectories in

the cluster. An average path for each group is also computed.

For assigning new trajectories to the existing clusters, two conditions are con-

sidered: �rst, 90 % of the points of the new trajectory must lie within the enve-

lope of the cluster, second, the Hausdor� distance between the new trajectory

and the average path must not be larger than the largest distance between the

envelope boundaries. If these conditions are satis�ed, the trajectory is checked

for similarity of velocity and curvature features which is not of interest here. If

the trajectory cannot be assigned to any of the existing cluster, it is marked as

anomalous.

In 2006, Zhang et al. [48] present an overview and evaluation of often used sim-

ilarity measures for objects’ trajectories from video surveillance scenes. Among

other, they present and test the following measures for trajectories:

◦ Euclidean distance as proposed by Fu et al. [10]

◦ Euclidean distance with principal components analysis as proposed by Bashi

et al. [3]

◦ Hausdor� distance as proposed by Lou et al. [34] and Junejo et al. [20]

◦ LCSS similarity as proposed by Buzan et al. [5] and Vlachos et al. [44]

◦ dynamic time warping as proposed by Keogh and Pazzani [22]

For the evaluation of the listed measures, Zhang et al. use 130 trajectories, ex-

tracted from a recorded surveillance scene of three hours. There is a ground truth

for the trajectories generated, by manually labeling the trajectories (with one

out of 13 labels). Each similarity for the trajectories is computed and the trajec-

tories are clustered into 13 groups, using spectral clustering, for each similarity

measure. The clustering results for each measure are evaluated by correct clus-

tering rate according to the ground truth and computational e�ciency. Zhang et

al. �nd that the correct clustering rate is almost the same for the euclidean dis-

tance, the euclidean distance with principal components analysis, dynamic time

warping and the LCSS similarity, however, only the LCSS similarity is able to

correctly classify trajectories with di�erent speeds. The euclidean distance with

or without principal components analysis is computationally the least expensive,

dynamic time warping and the LCSS measure are more costly, but still computa-

tionally cheaper than the Hausdor� distance. Though, the LCSS similarity needs

adjustment for the two parameter which adds further costs. In the presence of

noise in the data, the euclidean distance with principal components analysis and

the dynamic warping function perform best.

2.2.2 Comparing sequences of events

Besides the existing work about the similarity of trajectories, there are ap-

proaches which analyze sequences of events. They might be sequences of events
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in telecommunication data, ordered lists of courses a student has taken during

his or her studies, or sequences of stock prices from �nancial data.

In their article from 1997, Mannila and Ronkainen [37] describe a model for

measuring the similarity of event sequences which can be e�ciently computed

by a dynamic programming approach. They assume to be given an ordered se-

quence of events where each event is a tuple of the description of event type and

the timestamp of the event. They postulate that an appropriate distance mea-

sure for event sequences should satisfy non-negativity, coincidence, symmetry

and the triangle inequality, i.e. the measure should be a metric. They therefore

propose a distance measure which is based on the idea of an edit distance be-

tween event sequences. Given two sequences, the following edit operations are

allowed to transform the one sequence into another:

◦ insertion(e, t): inserting an event e to the sequence at a certain time point t
◦ delete(e, t): delete an event e from the sequence at a time point t
◦ move(e, t1, t2): move an event e from time point t1 to a di�erent time

point t2

where each of the operations has certain costs

◦ cost(insertion(e, t)) := w(e), with w(e) is a constant proportional to the

inverse of the number of occurrences of e in a long reference sequence, i.e.

it is more expensive to insert a rare event than a common one

◦ cost(delete(e, t)) := w(e) with the same w(e) as above

◦ cost(move(e, t1, t2)) := c · |t2 − t1| with c a constant, i.e. it is more ex-

pensive to move an event further in time than closer. This cost measure as-

sumes that the occurrence times in di�erent sequences are approximately

in the same scale, otherwise the di�erence of time points of di�erent scales

would yield unexpected results

The distance of two event sequences is then the minimal cost to transform one

sequence into the other. Mannila and Ronkainen can show that this distance

measure is indeed a metric and can be computed e�ciently by using a dynamic

programming approach. A more detailed description of the method and the re-

sults can be found in [38].

In a work of Mannila and Moen [36] which also deals with event sequences,

there can be found interesting ideas about the similarity of sequences. This arti-

cle is actually concerned with the development of a useful notion of similarity

between types of events occurring in sequences. They suggest the approach of

considering event types as similar if they occur in similar contexts in the se-

quences. The context of an occurrence can be understood as the set of event

types occurring within a certain time limit before the occurrence of the event

type of interest. For this goal, several possibilities to compare two di�erent con-

texts in sequences are developed: given m event types, the context of an event

in a sequence can be modeled as m-dimensional vector with 0 and 1 as entries,

where the i-th entry indicates if the i-th event type is element of the correspond-

ing context or not. Then, there are several possibilities to compare two contexts,

for example,

◦ Hamming distance of the two binary vectors, i.e. the number of di�ering

vector entries,
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◦ the two vectors can be considered as samples from two probability distri-

butions, the distance of the two vectors are then computed by computing

the di�erence of the corresponding distributions,

◦ each of the context vectors is associated with a centroid vector of the same

dimension, where the i-th entry of the centroid vector is the mean value

of the i-th entry in the context vector. The distance between the context

vectors is then the L1-distance between the associated centroid vectors.

It should be noted, though, that all three proposed methods to compare contexts

in sequences are set-based measures in which the order of events occurring in

the context is not considered anymore.

In an experimental evaluation, they use the centroid vector measure and

enrollment data from the computer science department of the university of

Helsinki. One sequence in the data is associated with one student and is an or-

dered sequence of courses in which (out of 18) the student was enrolled during

his or her studies. The assumption is that two courses should be similar if they

occur in the same stage of the curriculum. For each of the 18 courses, the centroid

vector distance is computed from the course sequences of about 5000 students

and compared with ground truth which was generated as follows: each of the

courses has a recommended term in which the course should be taken, therefore,

for the similarity of two courses, the di�erence between the ordinal number of

the recommended terms of the courses was taken as ground truth for the dis-

tance of the courses. Mannila and Moen �nd a correlation between the course

similarity based on their context method and the described ground truth.

2.2.3 Further approaches

Furthermore, there are approaches from di�erent research areas which consider

the similarity of sequences or paths, for example [30, 47, 26, 7, 28, 27, 12, 45, 39]

which are described brie�y in the following paragraph.

Lee et al. [30] consider the problem of �nding an e�cient indexing scheme for

large data bases of XML documents. The computation of the index is based on

the contained paths in the tree-structured document and they therefore propose

a similarity of paths in XML documents. Yang and Wang [47] propose a model

which uses signi�cant statistical properties of sequences (for example from bio-

logical data, as genome sequences) to compare and e�ciently cluster them. Ku-

mar [26] who is in the �eld of knowledge discovery in databases investigates

in his PhD thesis the clustering of sequential data and proposes as similarity

measure for sequences the linear combination of a set based and an order based

measure where the two parameters can be chosen according to the application

scenario.

Das et al. [7] introduce a model for measuring the similarity of time series as

they occur in �nancial or scienti�c applications. Their measure is based on the

assumption that two series should be similar if they show similar behavior for

a large part of their length. Laasonen presents an approach to compare ordered

sequences of GSM cells from users with mobile phones who move around, and

each time the mobile phone is registered in a cell, the cell identi�er is added to the

sequence. For the task of predicting the next cell a particular user will move next,
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he introduces a similarity measure and route merging, clustering and prediction

methods [27, 28].

In the context of user navigation in web pages, particularly in e-learning en-

vironments, the work of Gündüz and Öszu [12], of Wang and Zaïane [45] and of

Mor and Minguillón [39] area of interest.



3
M E A S U R I N G T H E S I M I L A R I T Y O F PAT H S

3.1 properties of similarity and distance measures for paths

In section 1.3, a de�nition of similarity and distance measures for paths is given.

The de�nition given there is rather general and allows a broad variety of func-

tions to be similarity or distance measures for paths. Though, not every function

which ful�lls the de�nition of a similarity or distance measure, makes sense to

be used for measuring the distance or similarity of paths. Therefore, before func-

tions are proposed as similarity and distance measures in section 3.3, we for-

mulate properties that one could require from a similarity or distance measure.

There is not a single similarity or distance measure in section 3.3 which satis-

�es all properties formulated in the following paragraphs. It is an open question

whether there exists such a distance or similarity measure at all.

(i) prefix and suffix consistency If two paths share a common pre�x

or su�x, a similarity measure should judge them more similar than if the

paths did not share this common pre�x or su�x.

A similarity measure σ respectively a distance measure δ satis�es su�x
consistency, if for any two paths p ∈ PV→vi with end node vi and q ∈
PV→vj with end node vj and a path r ∈ Pvk→V with (vi, vk), (vj, vk) ∈ E,

σ(p, q) ≤ σ(p⊕ r, q⊕ r)

respectively

δ(p, q) ≥ δ(p⊕ r, q⊕ r)

holds.

Furthermore, σ respectively δ satis�es pre�x consistency, if for any two

paths p ∈ Pvi→V , q ∈ Pvj→V and r ∈ PV→vk with (vk, vi), (vk, vj) ∈ E,

σ(p, q) ≤ σ(r⊕ p, r⊕ q)

respectively

δ(p, q) ≥ δ(r⊕ p, r⊕ q)

holds.

Informally, this means that two paths will become more similar if a com-

mon pre�x or su�x is appended to them (cf. �gure 3).

19
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(a) (b)

(c)

Figure 3: Illustration why the pre�x and su�x consistency might be a desired property

for a similarity or distance measure for paths: Although the paths in �gure 3a and 3b

contain the same substructure, it is intuitively clear that the paths in 3b should be rated

more similar than the paths in �gure 3a. For this reason, the pre�x and su�x consistency

is de�ned which is depicted in �gure 3c: the paths p⊕ r and q⊕ r should be rated as

more similar than the paths p and q. Similar for pre�x consistency: the paths r⊕ p and

r⊕ q should get an higher similarity score than the paths p and q.
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Figure 4: An illustration for insertion consistency: Paths with a common subpaths should

get an higher similarity value than the same paths without the common subpath. In this

example, the red and the blue path, i.e. p⊕ p′ and q⊕ q′ should be less similar than the

paths p⊕ r⊕ p′ and q⊕ r⊕ q′. The common subpath does not need to be inserted at the

same position in both paths, the only requirement is that that the edges for concatenation

exist in the graph.

(ii) insertion consistency More general than the pre�x and su�x con-

sistency is the insertion consistency. While pre�x and su�x consistency

deals with common subpaths at the end or beginning of the paths, insertion

consistency states the desired behavior of similarity and distance measures

when two paths share a common subpath at any position. Intuitively, the

similarity of two paths should be larger if they share a common subpath

than if they do not.

A similarity measure σ respectively a distance measure δ satis�es

insertion consistency, if for any paths p, q, p′, q′, r ∈ PV with

{(ωp, αr), (ωq, αr), (ωr, αp′), (ωr, αq′)} ⊆ E,

σ(p⊕ p′, q⊕ q′) ≤ σ(p⊕ r⊕ p′, q⊕ r⊕ q′)

respectively

δ(p⊕ p′, q⊕ q′) ≥ δ(p⊕ r⊕ p′, q⊕ r⊕ q′)

holds. An illustration can be found in �gure 4.

(iii) concatenation consistency When paths are concatenated, the sim-

ilarity of the concatenated paths should not be smaller than the similar-

ity of the single paths. Therefore, a similarity measure σ and a distance

measure δ, respectively, satisfy concatenation consistency, if for any paths

p, p′, q, q′ ∈ PV ,

σ(p⊕ p′, q⊕ q′) ≥ min{σ(p, q), σ(p′, q′)}

and

δ(p⊕ p′, q⊕ q′) ≤ max{δ(p, q), δ(p′, q′)}

holds, respectively.

(iv) edge imbalance consistency A larger number of common edges

should increase the similarity of two paths. The property capturing this

intuition is called edge imbalance consistency, since it considers paths of

equal length with di�erent number of common edges which is why they

are considered to be in an edge imbalance.
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A similarity measure σ and a distance measure δ, respectively, satisfy edge
imbalance consistency if, for any paths p, q, r ∈ PV with |p| = |q| = |r|,
it holds that

|E(p) ∩ E(q)| > |E(p) ∩ E(r)| ⇒ σ(p, q) > σ(p, r)

respectively

|E(p) ∩ E(q)| > |E(p) ∩ E(r)| ⇒ δ(p, q) < δ(p, r).

(v) boundedness It might be required that the similarity or distance mea-

sure for two paths is bounded from above by a constant. Therefore, a simi-

larity measure σ or a distance measure δ satis�es C-boundedness, if for any

paths p, q ∈ PV ,

σ(p, q) ≤ C or δ(p, q) ≤ C

holds for a constant C ∈ N. The constant C can be chosen according to

the underlying graph G. Normalized similarity or distance measures are by

de�nition 1-bounded. If the bound is sharp, i.e. for C-bounded similarity

measure σ or distance measure δ, there are paths p, q such that σ(p, q) =
C or δ(p, q) = C, we say that σ or δ satis�es strong C-boundedness. For

C-bounded similarity measures, the associated distance function can be

obtained by δ(p, q) = C− σ(p, q). For C-bounded distance measures, the

associated similarity measure can be obtained by σ(p, q) = C− δ(p, q).

(vi) non-negativity While the property of boundedness makes sure that

the measure is bounded from above, it might be necessary to bound the

measure from below. We say, a distance measure δ or a similarity measure

σ satis�es non-negativity, if for any paths p, q ∈ PV ,

δ(p, q) ≥ 0 or σ(p, q) ≥ 0

holds. Normalized distance and similarity measures are by de�nition non-

negative.

(vii) coincidence Coincidence is one of the four properties that are neces-

sary for a distance measure to be called a distance metric. A distance mea-

sure δ satis�es coincidence, if for any two paths p, q ∈ PV , it holds

δ(p, q) = 0⇔ p = q.

For a similarity measure, it is only appropriate to require coincidence, if it

is strongly C-bounded. Hence, a strongly C-bounded similarity measure σ

satis�es coincidence if for any two paths p, q ∈ PV , it holds

σ(p, q) = C ⇔ p = q.

(viii) symmetry A further property that one could require from a similarity or

distance measure is symmetry: it should not make a di�erence if path p is

compared to q or q is compared to p. Therefore, a distance measure or a

similarity measure satis�es symmetry if for any two paths p, q ∈ PV ,

σ(p, q) = σ(q, p) or δ(p, q) = δ(q, p)

holds, respectively.
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(ix) triangle ineqality The triangle inequality is also one of the four

axioms which make, if satis�ed, a distance metric from a distance measure

and can also be appropriate to be required from a distance measure for

paths. A distance measure δ satis�es the triangle inequality if, for any paths

p, q, r ∈ PV ,

δ(p, r) ≤ δ(p, q) + δ(q, r)

holds.

For a C-bounded similarity measure for paths, an equivalent triangle in-

equality can be formulated by using its associated distance measure:

σ(p, r) = C− δ(p, r)

≥ C− (δ(p, q) + δ(q, r))

= C− (C− σ(p, q))− (C− σ(q, r))

= σ(p, q) + σ(q, r)− C

3.2 about similarity of paths in general

In the next section, we propose several distance and similarity measures for paths

which use di�erent approaches to capture the similarity or distance of paths in

graphs. For a subset of the proposed measures, section 3.4 discusses which prop-

erties stated in section 3.1 are satis�ed by the measures. But before, we discuss

in the following section general approaches how to measure the similarity or

distance of paths.

3.2.1 Development of similarity measures

There are in general several types of approaches how to measure the similarity

or distance of paths in a graph, depending on which characteristics of paths are

considered to be important such that they are integrated in the computation

of a similarity. The decision of which properties are the most relevant features

of a path is highly dependent on the meaning of a path – whether the path of

interest is a route through a road network or whether it represents a part of a food

chain in a food web. The same principle holds for the development of similarity

measures in other domains: for example the computation of string similarity is

dependent on the meaning of the strings – whether strings are considered as

words with a semantic meaning, and where the similarity of the meaning is of

interest, or whether the single letters of the string carry information, and where

the similarity of the actual word is wanted, for example strings as sequences

of genetic information. In the latter case, a similarity measure such as the edit

distance might be appropriate while this does not make any sense when the

strings as words are compared. Comparing the strings pineapple and strawberry
with an edit based measure is not reasonable if the meaning of the two words

is important. But even then, it is not obvious how to compare the two words: if

it is of interest that both words stand for items which can both be classi�ed as
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fruits, the two words would get a high similarity value. Though, if the color of

the items represented by the words is relevant, they should get a low similarity

value.

The main point of this paragraph is that there is not the similarity measure to

use when comparing objects, it always depends on the context and the purpose

of comparing objects: why are certain objects being compared and which are the

characteristic features of the object which are of interest? These questions need

to be answered in order to develop – or to choose – an appropriate measure of

similarity for objects.

For this reason, the next section discusses some properties of paths which

could be of interest in certain application domains, before similarity and distance

measures based on these properties are proposed in section 3.3.

3.2.2 Features of paths

The following paragraph lists properties of paths which could be relevant in

certain contexts and domains and can be a starting point for the development

of similarity or distance measures for paths. Surely, this list can not cover all

possible aspects of paths, but aims at stating an exemplary subset.

position in the graph Thinking of route planning in a road network, for

two given paths, it might be an important feature where they are located

in the network. A route might be considered as similar to a second route

with the same starting and end point if it always uses roads which are

parallel and close to the roads the second path uses. On the other hand, a

route which takes a long detour might be considered as dissimilar to the

other one.

Therefore, the position of paths in the graph might be an important fac-

tor to consider for the development of similarity or distance measures for

paths. The challenge for the development of similarity or distance mea-

sures will be to �nd an appropriate way to measure the distance of two

paths in a graph.

contained elements It might be that for comparing paths the contained el-

ements are the essential feature and two paths should be considered as

very similar if they share a large amount of elements. If the Wikipedia

network is taken as example which contains articles as nodes and links

between articles as directed edges, a path from one article to another is a

sequence of articles in which each article is reached by following one of

the links in the preceding article. If two of such paths have to be compared,

it could be reasonable only to consider the contained articles in the paths

as a set, and rate them as dissimilar if they do not share any common arti-

cles, while they are rated as similar if they have large number of common

articles.

order of contained elements In other application domains, the order of

the nodes which is induced by the path is of essential importance. An ex-

ample can be found in the area of learning analytics (for an overview of the
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�eld of learning analytics see [40]). Let there be a student aiming at under-

standing a particular concept. He or she has several documents at hand in

which certain aspects of the concept are explained in di�erent degrees of

detail, di�culty, or in di�erent styles. By reading the di�erent documents,

the student creates a path through the network of documents. In this case,

the order in which the documents are read by the student is a key property

of the path: the order in which the documents are read play an important

role whether and how fast the student will understand the required mate-

rials. Starting with the most advanced material will certainly have another

e�ect than starting with a document giving a rough overview of the topic

or explaining the most basic aspects and reading the advanced material

afterwards.

Therefore, the order of elements which is imposed by a path can be a fea-

ture which might be taken into account in the development of a similarity

or distance measure for paths.

structure A further aspect of paths that should be integrated in the compu-

tation of similarity in some application areas is the shape or structure of

the path which is probably most di�cult to quantify. If again the road net-

work is taken as an example in which road junctions are nodes and edges

represent roads connecting the junctions. A path is then a route from some

starting point to some end point, using roads of the network. If such paths

are for example viewed from a athlete’s perspective who is running or bik-

ing these routes, two of such paths can be considered as quite similar even

if they in totally di�erent places and do not share any common roads. Their

similarity is only based on their shape or structure, for example there are

two routes which are both round trips with a lot of turns to the right, there

are two points on the route where it crosses a di�erent part of the route,

and the home stretch is a long straight road. It might be that at some other

place in the world, there is another route with these properties and which

could be regarded as similar to this one. This seems to be an arti�cial ex-

ample, and the further work will not concentrate on this kind of similarity

of paths, but it is meant to illustrate the wide variety of possible properties

on which a similarity measure can be built on.

3.3 proposing similarity and distance measures for paths

This section proposes several similarity and distance measures for paths, based

on the path features presented in 3.2.2. There will be found more possible sim-

ilarity and distance measures than they can be analysed and discussed in this

work. Therefore, there are measures which are introduced and de�ned, but will

not analysed and used in the following chapters. Their analysis and evaluation

is left for future work. The measures in bold characters are part of the next chap-

ters, the remaining measures are introduced in order to show that there are more

measures possible and which need to be evaluated in future work. An overview

of the introduced measures can be found in table 1.
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3.3.1 Position based distance measures

The following distance measures for two paths are based on the assumption that

the position of the paths in the graph is the essential feature for similarity com-

putation, and that two paths are more similar to each other if they are closer to

each other. Hence, the following three measures aim at compute some kind of

spatial distance between paths.

hausdorff distance Junejo et al. [20] propose in their work about trajec-

tory analysis in video surveillance systems to use the Hausdor� distance

as distance measure for trajectories. The Hausdor� distance was developed

to measure how close two subsets in a metric space are and can be adapted

to trajectories and paths. For two paths, the Hausdor� distance is de�ned

as

δHausdor f f (p, q) := max{maxv∈pminw∈qd(v, w), maxw∈qminv∈pd(w, v)}

and takes therefore the longest shortest path between any nodes of the two

paths. It therefore considers very speci�cally one particular property of the

two paths, namely their largest distance to each other, and leaves other

properties of the paths aside. There might be cases where this approach

can be appropriate, but it is necessary to be aware of the strong e�ect the

maximization of the distance between the two paths has.

Since the maximal value the Hausdor� distance can take is the diameter

of the graph, a possible normalization for the Hausdor� distance could be

by the diameter:

δHausdor f f ,N(p, q) :=
δHausdor f f (p, q)

diam(G)

The Hausdor� distance is very sensitive to outliers, in the sense that the

Hausdor� distance will remain unchanged as long as the maximal distance

between the two paths does not change – even if the rest of the paths are

the same. This might be an unwanted e�ect in certain scenarios, that is

why we propose an average distance of two paths as distance measure.

simple average distance Idea of the simple average distance is to cal-

culate the distance in the graph from each node in p to its counterpart

in q and to calculate the average of these node distances. The main prob-

lem in the calculation of the average distance is to �nd the appropriate

counterpart of each node. As a �rst idea, we propose to constraint the dis-

tance measure on paths with equal length and compare the i-th node of the

paths with each other. For two paths p, q ∈ PV with |p| = |q| = k− 1,

the simple average distance is de�ned as

δsad(p, q) :=
1
k

k

∑
i=1

d(vpi , vqi).
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An illustration can be found in �gure 5a. Since the maximal value which

δsad can take for two paths is the diameter of the graph in which the paths

lie, the normalized simple average distance is de�ned as

δsad,N :=
δsad(p, q)
diam(G)

.

The normalized measure is only needed if a value in [0, 1] is required or

the distance of paths in two di�erent graphs are compared to each other.

The simple average distance has two main de�ciencies: it is only applicable

to paths of equal length, and the matching which node of the one path is

compared with which node of the second path, is very naive and might not

be a good choice in many cases. For these reasons, we propose the matched
average distance.

(a) An example for the simple average

distance. The dashed lines represent which

node is compared with which node where

the numbers indicate the distances of

the nodes in the graph. The two shown

paths would get a distance value of

1
5 · (4 + 2 + 3 + 4 + 5) = 18

5 .

(b) Mapping example for matched average

distance. The dashed lines represent the

mapping of g.

(c) Two example paths for the tuple similar-

ity. The edges are drawn directed for a better

readability although we consider undirected

graphs.

Figure 5: Examples for the similarity and distance measures.

matched average distance The matched average distance is de�ned

as follows: for two paths p, q ∈ PV with k − 1 = |p| ≥ |q|, let g :
V(p) → V(q) a function which maps each node of p onto a node of q.

Given a mapping g and two paths p, q ∈ PV with k− 1 = |p| ≥ |q|, the

matched average distance is then de�ned as

δ
g
mad(p, q) :=

1
k

k

∑
i=1

d(vpi , g(vpi))

Furthermore, we de�ne

δ
g
mad(q, p) := δ

g
mad(p, q)
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and in case |p| = |q| = k− 1, we de�ne

δ
g
mad(p, q) = δ

g′

mad(q, p) = min

{
1
k

k

∑
i=1

d(vpi , g(vpi)),
1
k

k

∑
i=1

d(vqi , g′(vqi))

}

with g′ : V(q) → V(p). The mapping g can be chosen appropriately for

the given application scenario, as intuitive mapping, we propose g to map

each node of p on the by distance closest node of q, i.e.

g(vpi) ∈ {vqj ∈ V(q)|∀vqj′ ∈ V(q) : d(vpi , vqj′ ) ≥ d(vpi , vqj)}.

Hereinafter, this mapping is used and δmad is used without the superscript

g. Furthermore, when using this mapping g, the formula for the matched

average distance can be simpli�ed to

δmad(p, q) =
1
k

k

∑
i=1

min
w∈q

d(vpi , w).

Note that with this mapping, it might happen that there are nodes in path

q which are not matched at all, although it is the shorter path of the two

(consider for example �gure 5b, where all nodes of p are mapped onto one

node of q).

Finding a mapping which captures the intuition of similarity in a given

scenario will be the main challenge when applying the matched average

distance.

Since also this distance measure takes its maximal value when the distance

of each node of p to its mapped node of q is the diameter of the graph, the

normalized matched average distance results from the normalization by the

diameter of the graph:

δ
g
mad,N(p, q) :=

δ
g
mad(p, q)
diam(G)

3.3.2 Element based similarities

The following two similarity measures are based on the assumption that the most

characteristic feature of a path is the contained elements. Two paths are consid-

ered as more similar if they share an (absolutely or relatively) higher number of

elements.

node set similarity The most simple approach to capture this idea is to

count the number of elements the two paths share. Therefore, we de�ne

the node set similarity for two given paths p, q as

σnss(p, q) := |V(p) ∩V(q)|

which takes the absolute number of nodes the two paths have in common.

As this measure does not take into account the length of the two paths at

all, and therefore, longer paths with a larger set of nodes will be more likely
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have a higher value of similarity than shorter paths. As consequence, this

measure is normalized by the number of nodes the two paths could have

in common and de�ne

σnss,N(p, q) :=
σnss(p, q)

|V(p) ∪V(q)| =
|V(p) ∩V(q)|
|V(p) ∪V(q)|

which is also known as Jaccard measure [15]. Note that this normalization

is qualitatively di�erent from the normalizations done for the previous

distance measures. While the simple and the matched average distance

are normalized by value which is the same for all paths in the same graph,

here, the normalization is achieved by a value which is speci�c for the

particular pair of paths.

edge set similarity The same approach as the previous similarity mea-

sure can be done by counting the common number of edges instead of

nodes. We therefore get the edge set similarity for two paths p and q by

σess(p, q) := |E(p) ∩ E(q)|

and the normalized similarity measure by

σess,N(p, q) :=
σess(p, q)
|E(p) ∪ E(q)| =

|E(p) ∩ E(q)|
|E(p) ∪ E(q)|

3.3.3 Order based similarities

The similarity measures described in the paragraph before consider paths as un-

ordered sets of elements, though, in many cases, the order that the path imposes

on the nodes is an essential information of the path. Hence, the order of the

nodes or edges in the path should be the base for similarity measures for paths.

Figure 8b shows the weakness of set based similarity measures. The two paths

will have a very high node set similarity (the normalized node set similarity will

even be 1). Though, the order of the nodes in the two paths is totally di�erent.

This path feature is not used at all in computing the similarity. For this reason, the

following similarity measures will take the order of the nodes as most important

feature to consider for the computation of path similarity.

lcss similarity One measure that takes the order of the nodes in the paths

into account is an adaption of the inclusion similarity for two strings, pro-

posed by Laasonen [28, 27]. Laasonen introduces the inclusion similarity

for two strings s, t ∈ Σ∗, Σ alphabet, with |s| ≥ |t| as I(s, t) = T
|t| with

T the number of elements of t which occur in the same order in s. How-

ever, this measure yields unexpected results because it is normalized by

the length of the shorter string and not by the length of the longer one. If

the two strings abcdefgh and ah are taken as an example, the inclusion

similarity yields a similarity of 1 which does not �t to our understanding

of similar strings, but does make sense in the context of the work of Laa-

sonen. Therefore, we propose the following as a similarity measure which
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considers the order of the nodes: Let p, q ∈ PV with |p| ≥ |q|. Then, the

LCSS similarity (the name is explained below) is de�ned as

σlcss(p, q) := P(p, q)

with

P(p, q) := max
{
|(vqi1

. . . vqin
)|
∣∣ vqi1

, . . . , vqin
∈ V(q)

and vqi1
�q · · · �q vqin

and ∃(vpj1
. . . vpjn

) with vpj1
, . . . , vpjn

∈ V(p)

and vpj1
�p · · · �p vpjn

and vqi1
= vpj1

, . . . , vqin
= vpjn

}

The similarity measure is normalized by the length of the longer path:

σlcss,N(p, q) :=
σlcss(p, q)

max{|p|+ 1, |q|+ 1}

The two paths p and q in �gure 8b would get similarity values of

σlcss(p, q) = 4 and σlcss,N(p, q) = 2
3 .

This similarity measure is actually a well-known concept: If the two paths

p and q are considered as strings in which the i-th letter represents the

i-th node in the path, P(p, q) is actually the length of the longest common

subsequence of the two path strings. The longest common subsequence

of two strings a = a1a2 . . . an ∈ Σ∗ and b = b1b2 . . . bl ∈ Σ∗ for some

alphabet Σ can be de�ned in the following way [13]: if there is a list of

indices i1 < i2 < · · · < ik with k < n, the subsequence speci�ed by this

indices list is ai1 ai2 . . . aik . In particular, this means that the letters from a
which occur in the subsequence need to be in the same order than in a,

but do not need occur consecutively in a. ac for example is a subsequence

of abc. For two strings a and b, a common subsequence is a subsequence

that occurs in both a and b, the longest common subsequence (LCSS) is

then the longest of all common subsequences. The length of the longest

common subsequence of the paths p and q considered as strings is exactly

the de�nition of P(p, q). This is why we call this similarity measure LCSS

similarity.

longest common substring similarity The LCSS similarity looks for

nodes in the paths which occur in the same order in both paths, but does

not require that these nodes occur directly consecutively in the paths. In-

formally, the LCSS similarity allows gaps in the common node sequences.

For cases in which this �exibility is not desired, but consecutive common

sequences are the desired path feature which should be used for comput-
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ing the similarity of paths, the longest common substring similarity is de-

signed. The longest common substring similarity is de�ned as

σstr(p, q) := max { j ∈ N
∣∣ vpi = vqi′ , vpi+1 = vqi′+1

, . . . , vpi+j = vqi′+j
,

i ∈ {1, . . . , k}, i′ ∈ {1, . . . , m}
}
− 1

The normalization is the same as for the LCSS measure:

σstr,N(p, q) :=
σstr(p, q)

max{|p|+ 1, |q|+ 1}

tuple similarity As an even more special measure that considers the order

of the nodes of the paths, we propose the tuple similarity. It only makes

sense in cases in which the two parts share a large proportion of their

nodes (i.e. the normalized node set similarity of the paths is high). The

tuple similarity counts how many node tuples, triples, quadruples, etc. the

two paths have in common in the sense that the nodes in the tuples, triples,

etc. occur in this order in both paths. Formally, let

T1(p) = {v ∈ V(p)}
T2(p) = {(v, w) ∈ V(p)×V(p)|v �p w}
T3(p) = {(v, w, x) ∈ V(p)×V(p)×V(p)|v �p w �p x}

. . .

T|p|+1(p) = {(v1, . . . vk) ∈ V(p)|p|+1|v1 �p v2 �p · · · �p vk}

be the sets of ordered tuples of nodes with a certain length that occur in

this order in a considered path.

The similarity measure is then for two paths p, q ∈ PV with k − 1 =

|p| ≥ |q|

σts(p, q) =
1
k

k

∑
i=1
|Ti(p) ∩ Ti(q)|

The similarity sums up how many tuples of each length the two paths have

in common.

The normalization for this measure needs to be di�erent than for the other

measures since it is strongly dependent on i how large the i-th summand

can be. For all summands |Ti(p) ∩ Ti(q)|, it holds that it takes its maxi-

mal value if the two paths are identical. The largest value |Ti(p) ∩ Ti(q)|
can take is (k

i), the number of possibilities of choosing i elements from a

set with k objects, i.e. the number of subsets of size i of a set with size k.

Hence, we propose to normalize each summand separately and sum up the

normalized summands:

σts,N(p, q) :=
1
k

k

∑
i=1

|Ti(p) ∩ Ti(q)|
(k

i)
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For an example, consider the paths shown in �gure 5c. Let p = (v1v2v3v4)

be the green path and q = (v3v2v4v1) be the blue path. It is |p| = |q| = 3.

The tuple sets are then

T1(p) = {v1, v2, v3, v4}
T1(q) = {v1, v2, v3, v4}
T2(p) = {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v4), (v3, v4)}
T2(q) = {(v3, v2), (v3, v4), (v3, v1), (v2, v4), (v2, v1), (v4, v1)}
T3(p) = {(v1, v2, v3), (v1, v2, v4), (v1, v3, v4), (v2, v3, v4)}
T3(q) = {(v3, v2, v4), (v3, v2, v1), (v3, v4, v1), (v2, v4, v1)}
T4(p) = {(v1, v2, v3, v4)}
T4(q) = {(v3, v2, v4, v1)}

and therefore

σts(p, q) =
1
4
· (|T1(p) ∩ T1(q)|+ |T2(p) ∩ T2(q)|

+ |T3(p) ∩ T3(q)|+ |T4(p) ∩ T4(q)|)

=
1
4
· (4 + 2 + 0 + 0) =

3
2

and

σts,N(p, q) =
1
4
·
(
|T1(p) ∩ T1(q)|

(4
1)

+
|T2(p) ∩ T2(q)|

(4
2)

+
|T3(p) ∩ T3(q)|

(4
3)

+
|T4(p) ∩ T4(q)|

(4
4)

)

=
1
4
·
(

4
4
+

2
6
+

0
4
+

0
1

)
=

1
3

It also might be appropriate to choose a subset of tuple sets which are used

to compute the tuple similarity. Depending on the application scenario, it

might be more important that many short subsequences are common for

both paths or a few long ones or any value between. Choosing a subset

will also reduce the computation time.

edit distance A widely used distance measure for objects, strings and even

sequences (for example see [36]) is the edit distance which measures the

minimal costs of operations to transform one object into another, given

a set of allowed transformation operations and their respective costs. The

usually allowed operations are inserting, deleting and substituting or mov-

ing parts of the object. For paths, this approach is also applicable, but the

allowed operations should be carefully chosen as well as the conditions

which should hold during the transformation process. One possibility is to

allow the classic operations of inserting, deleting and substituting nodes

in the paths and to only require that the resulting node sequence is a valid

path in the given path, i.e. to allow that node sequences which occur dur-

ing the transformation process, are no real paths in the given graph. Then,
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for a given node sequence p = (vp1 . . . vpk) and a node v ∈ V, we de�ne

the edit operations

insert(p, v, i) = (vp1 vp2 . . . vpi−1 vvivpi+1 . . . vpk)

delete(p, vpj) = (vp1 . . . vpj−1 vpj+1 . . . vpk)

substitute(p, vpj , v) = (vp1 . . . vpj−1 vvpj+1 . . . vpk)

A node sequence p can then be transformed into another node

sequence q by a sequence of edit operations (e1 . . . el) on p if

el(el−1(. . . e1(p, ·, ·), ·, ·) . . . ), ·, ·) = q yields q, whereas e1, . . . , el ∈
{insert, delete, substitute}. For a better readability, the edit operations in

the given transformation process all have placeholders for two arguments.

If the respective edit operations is a delete-operation, the edit operation

evidently only has one argument.

A cost function c assigns each edit operations a value which represents the

e�ort that is needed to perform the modi�cation. The distance measure for

two paths is then de�ned as

δed(p, q) := min

{
l

∑
i=1

c(ei)

∣∣∣∣∣el (el−1 (. . . (e1 (p, ·, ·) , ·, ·) . . . ) , ·, ·) = q

}

A possible normalization could be done by the maximal value δed can take

for the two paths which is dependent on the design of the cost function. In

simple cases, a trivial upper bound is the costs of deleting all nodes from

p and inserting all nodes from q or – if substituting a node is cheaper than

deleting and inserting one – the costs of substituting all nodes from p by

nodes from q (and delete delete remaining nodes or insert missing nodes).

Then, for the �rst case,

δed,N(p, q) :=
δed(p, q)

∑k
i=1 c(delete(pi, vpi)) + ∑m

i=1 c(insert(pi, vqi , i))

whereas pi is the intermediate node sequence during the transformation

process.

Since the cost function can also take the parameters of the edit operation

as arguments and the costs for insertion, deletion and substitution can be

arbitrarily di�erent, the proposed normalization might be inappropriate

in certain cases. It should be chosen according to the characteristics of the

selected cost function and application domain.

For the context of paths in graphs, it might be reasonable to require that all

intermediate node sequences during the transformation process are valid

paths in the given graph, as well. This requirement will potentially in-

crease the edit costs for paths. Though if the edit distance is thought of

being a model for an actual transformation process, it is natural to impose

the constraint that only valid intermediate stages can be used.
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measure name normalization range

δHausdor f f Hausdor� distance {0, . . . , diam(G)} ⊆ N
δHausdor f f ,N normalized Hausdor� distance diam(G) [0, 1] ⊆ R

δsad simple average distance [0, diam(G)] ⊆ R
δsad,N normalized simple average distance diam(G) [0, 1] ⊆ R

δmad matched average distance [0, diam(G)] ⊆ R
δmad,N normalized matched average distance diam(G) [0, 1] ⊆ R

σnss node set similarity {0, . . . , |V|} ⊆ N
σnss,N normalized node set similarity |V(p) ∪V(q)| [0, 1] ⊆ R

σess edge set similarity {0, . . . , |E|} ⊆ N
σess,N normalized edge set similarity |E(p) ∪ E(q)| [0, 1] ⊆ R

σlcss longest common subsequence similar-

ity

{0, . . . , min{|p|+ 1, |q|+ 1}}⊆ N

σlcss,N normalized LCSS max{|p|+ 1, |q|+ 1} [0, 1] ⊆ R

σstr longest common substring similarity {0, . . . , min{|p|+ 1, |q|+ 1}}⊆ N
σstr,N normalized longest common sub-

string similarity

max{|p|+ 1, |q|+ 1} [0, 1] ⊆ R

σts tuple similarity [0, ∑k
i=1

(k−1)!
i!(k−i)! ] ⊆ R

fork := max{|p|+ 1, |q|+ 1}
σts,N normalized tuple similarity each summand by (k

i) [0, 1] ⊆ R

δed edit distance R (depends on cost function)

δed,N normalized edit distance depends on cost function [0, 1]

Table 1: An overview of the introduced similarity and distance measures.
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3.3.4 Further ideas

parametrized measures In their work about the similarity of trajectories

of objects moving in a two- or three-dimensional space, Vlachos et al. [44]

propose the longest common subsequence measure to compare to trajecto-

ries. Though, they introduce their similarity measure as parametrized mea-

sure with two parameters δ and ε. The parameter ε indicates how close in

space two points of the trajectories need to be in order that they are con-

sidered as the same and can contribute to a common subsequence. The

parameter δ controls how close in time the two points need to be such

that they can be considered as a match.

The further details of their approach are not of interest here, but the idea of

parametrized similarity or distance measures is also an interesting one for

paths in graphs. For example, there could be a parameter which determines

which distance two nodes in graph are allowed to have such that they

are considered as the same and can contribute to a similarity or distance

measure. This would make the measures more �exible in the sense that

two nodes do not necessarily need to be exactly the same in order to be

a match, for example to increase the node set similarity. If two nodes are

neighbors, i.e. have a distance of 1, it might be reasonable to count them

as match or as common node, at least more than two distant nodes.

For almost each of the introduced similarity and distance measures, there

is a parametrization which might make sense in certain application areas,

but this approach needs to evaluated further in future work.

3.4 properties of the proposed measures

This section reviews the similarity and distance measures proposed in section 3.3

for their properties: for all proposed measures, it is checked whether they satisfy

the properties introduced in section 3.4. An overview of the results can be found

in table 2. The proofs and counterexamples for the entries in the table are given

in the following paragraphs. Some of the entries are marked with a question

mark in order to make clear that we did not �nd a proof or counterexample for

this pair of measure and property.

3.4.1 Simple Average Distance

prefix and suffix consistency δsad and δsad,N satisfy pre�x and su�x

consistency.
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(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Simple average distance

unnormalized 3 7 3 7 3 3 3 3 3

normalized 3 7 3 7 3 3 3 3 3

Matched average distance

unnormalized 3 3 ? 7 3 3 7 3 7

normalized 3 3 ? 7 3 3 7 3 7

Node set similarity

unnormalized 3 3 3 7 3 3 7 3 3

normalized ? ? ? 7 3 3 7 3 ?

Edge set similarity

unnormalized 3 7 3 3 3 3 7 3 3

normalized ? 7 ? ? 3 3 7 3 ?

LCSS similarity

unnormalized 3 3 3 7 7 3 7 3 7

normalized 3 3 ? 7 3 3 3 3 ?

Table 2: The properties have the enumeration as in section 3.1:

(i) pre�x and su�x consistency

(ii) insertion consistency

(iii) concatenation consistency

(iv) edge imbalance consistency

(v) boundedness

(vi) non-negativity

(vii) coincidence

(viii) symmetry

(ix) triangle inequality
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Proof. We only show the su�x consistency, the proof for pre�x consistency is

similar. For given paths p, q, r with |p| = |q| = k− 1 and |r| = l − 1, it holds

δsad(p, q) =
1
k

k

∑
i=1

d(vpi , vqi)

=
1
k

(
k

∑
i=1

d(vpi , vqi) +
l

∑
i=1

0

)

=
1
k

(
k

∑
i=1

d(vpi , vqi) +
l

∑
i=1

d(vri , vri)

)
since d(v, v) = 0 ∀v ∈ V

≥ 1
k + l

(
k

∑
i=1

d(vpi , vqi) +
l

∑
i=1

d(vri , vri)

)
= δsad(p⊕ r, q⊕ r)

For the normalized simple average distance, it also holds

δsad,N(p, q) =
1

diam(G)
· 1

k

k

∑
i=1

d(vpi , vqi)

≥ 1
diam(G)

· δsad(p⊕ r, q⊕ r)

= δsad,N(p⊕ r, q⊕ r) �

insertion consistency δsad and δsad,N do not satisfy insertion consis-

tency.

Proof. The reason why insertion consistency does not hold for the simple av-

erage distance is that insertion consistency does not require that the common

subpath of the two paths is at the same position for both paths. Consider the

example shown in �gure 6a. The paths p, p′, q, q′ are drawn in (light) blue and

green. The path r which is inserted in p and q is drawn in red. The gray edges

with label depict the distance of the nodes in the graph and how the nodes of

p and q are mapped onto each other. Therefore, the simple average distance for

the paths without the common subpath gives

δsad(p⊕ p′, q⊕ q′) =
1
8
(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) = 1.

If then r is inserted between p and p′ and between q and q′, respectively, the

nodes are matched in a way that considerably increases the simple average dis-

tance although the same subpath is inserted in both paths, as it happens in �g-

ure 6a:

δsad(p⊕ r⊕ p′, q⊕ r⊕ q′)

=
1
11
· (1 + 1 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 1 + 1)

=
32
11

> 1 = δsad(p⊕ p′, q⊕ q′)
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(a) An example in which the simple average distance does not satisfy insertion consis-

tency.

(b) An example in which the simple average distance does not satisfy edge imbalance

consistency.

Figure 6: Examples for properties of the simple average distance

The same example works for the normalized simple average distance:

δsad,N(p⊕ p′, q⊕ q′) =
1

diam(G)
<

32
11 · diam(G)

= δsad,N(p⊕ r⊕ p′, q⊕ r⊕ q′)

for any diam(G) > 0. �

concatenation consistency δsad and δsad,N satisfy concatenation con-

sistency.
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Proof. For paths p, p′, q, q′ with |p| = |q| = k− 1 and |p′| = |q′| = k′ − 1, it

holds

δsad(p⊕ p′, q⊕ q′)

=
1

k + k′
·
(

k

∑
i=1

d(vpi , vqi) +
k′

∑
j=1

d(v′pj
, v′qj

)

)

=
k · δsad(p, q) + k′ · δsad(p′, q′)

k + k′

≤ k ·max {δsad(p, q), δsad(p′, q′)}+ k′ ·max {δsad(p, q), δsad(p′, q′)}
k + k′

=
1

k + k′
· (k + k′) ·max

{
δsad(p, q), δsad(p′, q′)

}
= max

{
δsad(p, q), δsad(p′, q′)

}
.

This result can be transferred to the normalized simple average distance

δsad,N(p⊕ p′, q⊕ q′) =
δsad(p⊕ p′, q⊕ q′)

diam(G)

≤ max {δsad(p, q), δsad(p′, q′)}
diam(G)

= max
{

δsad(p, q)
diam(G)

,
δsad(p′, q′)
diam(G)

}
= max

{
δsad,N(p, q), δsad,N(p′, q′)

}
. �

edge imbalance consistency δsad and δsad,N do not satisfy edge imbal-

ance consistency.

Proof. Consider the paths p, q, r in �gure 6b. The three paths have all equal

length, therefore, the simple average distance can be computed. It holds

|E(p) ∩ E(q)| = 2

and

|E(p) ∩ E(r)| = 1,

therefore,

|E(p) ∩ E(q)| > |E(p) ∩ E(r)|.

But

δsad(p, r) =
1
8
(1 + 1 + 1 + 1 + 1 + 1 + 0 + 0) =

3
4

and

δsad(p, q) =
1
8
(2 + 0 + 0 + 0 + 2 + 4 + 6 + 8) =

11
4

and therefore

δsad(p, q) > δsad(p, r).

The same counterexample also holds for δsad,N . �
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boundedness δsad and δsad,N satisfy diam(G)-boundedness respectively 1-

boundedness.

Proof. By de�nition of the diameter of a graph G, for any two nodes v, w ∈ V,

it holds d(v, w) ≤ diam(G). Then, for any paths p, q ∈ PV in a graph G with

|p| = |q| = k− 1, it holds

δsad(p, q) =
1
k

k

∑
i=1

d(vpi , vqi) ≤
1
k

k

∑
i=1

max {d(v, w)|v, w ∈ V}

=
1
k

k

∑
i=1

diam(G) =
k · diam(G)

k
= diam(G)

Since

δsad,N(p, q) =
δsad(p, q)
diam(G)

≤ diam(G)

diam(G)
= 1,

δsad,N is 1-bounded. δsad and δsad,N also satisfy strong diam(G)-boundedness

and 1-boundedness, respectively: let v and w the nodes for which d(v, w) =

diam(G), then for p = (v) and q = (w),

δsad(p, q) = diam(G)

and

δsad,N(p, q) = 1.

�

non-negativity δsad and δsad,N satisfy non-negativity.

Proof. For any two nodes v, w ∈ V in an unweighted graph G, d(v, w) ≥ 0
holds. Hence, for any paths p, q, δsad(p, q) ≥ 0 and δsad,N(p, q) ≥ 0 is satis�ed.

If δsad is applied on graphs with possibly negative edge weights, this property is

not necessarily satis�ed anymore. �

coincidence δsad and δsad,N satisfy coincidence.

Proof. Let for any paths p, q ∈ PV

δsad(p, q) = 0

⇔ δsad(p, q) =
1
k

k

∑
i=1

d(vpi , vqi) = 0

⇔ d(vpi , vqi) = 0 ∀i ∈ {1, . . . , k} since d(v, w) ≥ 0 ∀v, w ∈ V

⇔ vpi = vqi∀ i ∈ {1, . . . , k}
⇔ p = q.

Note that we consider the paths p and inv(p) as not equal which is consistent

with the de�nitions of δsad and the coincidence property. The proof for δsad,N is

similar. �



3.4 properties of the proposed measures 41

symmetry δsad and δsad,N satisfy symmetry.

Proof. In undirected graphs, the distance of two nodes is symmetric, i.e. for any

two nodes v, w ∈ V, it holds d(v, w) = d(w, v). Therefore,

δsad(p, q) =
1
k

k

∑
i=1

d(vpi , vqi)

=
1
k

k

∑
i=1

d(vqi , vpi)

= δsad(q, p)

and similarly for δsad,N . If this measure is applied on directed graphs, symmetry

is not necessarily given anymore. �

triangle ineqality δsad and δsad,N satisfy the triangle inequality.

Proof. We use that the distance of two nodes in a graph satis�es the triangle

inequality: in a connected, simple, undirected graph G = (V, E), for any nodes

v, w, x ∈ V, it holds d(v, x) ≤ d(v, w) + d(w, x). Therefore, it holds

d(vpi , vqi) ≤ d(vpi , vri) + d(vri , vqi) ∀i ∈ {1, . . . , k}
⇔ 0 ≤ d(vpi , vri) + d(vri , vqi)− d(vpi , vqi) ∀i ∈ {1, . . . , k}

⇔ 0 ≤
k

∑
i=1

(
d(vpi , vri) + d(vri , vqi)− d(vpi , vqi)

)
⇔ 0 ≤

k

∑
i=1

d(vpi , vri) +
k

∑
i=1

d(vri , vqi)−
k

∑
i=1

d(vpi , vqi)

⇔
k

∑
i=1

d(vpi , vqi) ≤
k

∑
i=1

d(vpi , vri) +
k

∑
i=1

d(vri , vqi)

⇔ 1
k
·

k

∑
i=1

d(vpi , vqi) ≤
1
k
·

k

∑
i=1

d(vpi , vri) +
1
k
·

k

∑
i=1

d(vri , vqi)

⇔ δsad(p, q) ≤ δsad(p, r) + δsad(r, q)

Since

δsad(p, q) ≤ δsad(p, r) + δsad(r, q)

⇔ 1
diam(G)

· δsad(p, q) ≤ 1
diam(G)

· δsad(p, r) +
1

diam(G)
· δsad(r, q)

⇔δsad,N(p, q) ≤ δsad,N(p, r) + δsad,N(r, q)

holds, the triangle inequality also holds for the normalized simple average dis-

tance. �

further properties The idea of the simple average distance is a rather

naive one since it measures how distant the single nodes of the two paths are

from each other on average. The rule which node of the one path is compared

to which node of the other path, is very simple and in�exible. Because the i-th
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node of the �rst path is matched onto the i-th node of the other path, the applica-

bility of the simple average distance is constrained to paths of equal length and

its computation can result in an unintuitively high value because the strict map-

ping rule for the nodes might be inappropriate for certain paths. For example, it

might be unexpected that the average distance of a path p and its inverse inv(p)
is never 0, but rather quite high. Furthermore, as it was shown in the counterex-

ample for insertion consistency, the simple average distance is very sensitive to

changes in the paths. Even very small changes in the paths (insertions or dele-

tions of nodes) can considerably change the value of the simple average distance

because the mapping of the nodes can be a completely di�erent one.

On the other hand, this distance measure is very easy to compute, there

is no need to compute a computationally costly mapping of path nodes, only

|p|+ 1 = |q|+ 1 node distances need to be computed. In addition to that, the

simple average distance is a distance metric and satis�es even some more of the

checked properties.

3.4.2 Matched Average Distance

prefix and suffix consistency δmad and δmad,N satisfy pre�x and su�x

consistency.

Proof. We only prove that δmad satis�es su�x consistency, the other cases are

similar. Let |p| = k − 1 ≥ |q| = m− 1 and |r| = l − 1. Furthermore, let the

mappings g : V (p) → V (q) and g′ : V (p) ∪ V (r) → V (q) ∪ V (r) be as

proposed in section 3.3, then,

δmad (p⊕ r, q⊕ r) =
1

k + l


k

∑
i=1

d
(
vpi , g′

(
vpi

))
+

l

∑
i=1

d
(
vri , g′ (vri)

)
︸                   ︷︷                   ︸

=0
since d(vri ,g

′(vri))=0
∀ i∈{1,...,k}


=

1
k + l

k

∑
i=1

d
(
vpi , g

(
vpi

))
≤ 1

k

k

∑
i=1

d
(
vpi , g

(
vpi

))
= δmad (p, q) .

For the normalized matched average distance, it holds

δmad,N (p⊕ r, q⊕ r) =
δmad (p⊕ r, q⊕ r)

diam (G)

≤ δmad (p, q)
diam (G)

= δmad,N (p, q) . �
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insertion consistency δmad and δmad,N satisfy insertion consistency.

Proof. Let p, q, p′, q′, r ∈ PV be paths which can be concate-

nated to the paths p ⊕ p′, q ⊕ q′, p ⊕ r ⊕ p′ and q ⊕ r ⊕ q′, i.e.{(
ωp, αp′

)
,
(
ωq, αq′

)
,
(
ωp, αr

)
,
(
ωq, αr

)
,
(
ωr, αp′

)
,
(
ωr, αq′

)}
⊆ E and

|p| = k− 1, |p′| = k′ − 1, |q| = m− 1, |q′| = m′ − 1 and |r| = l − 1. Let wlog
|p|+ |p′| ≥ |q|+ |q′| and g : V (p)∪V (r)∪V (p′)→ V (q)∪V (r)∪V (q′)
and g′ : V (p) ∪V (p′)→ V (q) ∪V (q′) as proposed in section 3.3. Then

δmad
(

p⊕ r⊕ p′, q⊕ r⊕ q′
)

=
1

k + l + k′

 k

∑
i=1

d
(
vpi , g

(
vpi

))
+

l

∑
i=1

d (vri , g (vri))︸                  ︷︷                  ︸
=0

+
k′

∑
i=1

d
(

vp′i
, g
(

vp′i

))
=

1
k + l + k′

(
k

∑
i=1

d
(
vpi , g

(
vpi

))
+

k′

∑
i=1

d
(

vp′i
, g
(

vp′i

)))

≤ 1
k + l + k′

(
k

∑
i=1

d
(
vpi , g′

(
vpi

))
+

k′

∑
i=1

d
(

vp′i
, g′
(

vp′i

)))

≤ 1
k + k′

(
k

∑
i=1

d
(
vpi , g′

(
vpi

))
+

k′

∑
i=1

d
(

vp′i
, g′
(

vp′i

)))
= δmad

(
p⊕ p′, q⊕ q′

)
For the normalized matched average distance, it holds

δmad,N
(

p⊕ r⊕ p′, q⊕ r⊕ q′
)
=

δmad,N (p⊕ r⊕ p′, q⊕ r⊕ q′)
diam (G)

≤ δmad (p⊕ p′, q⊕ q′)
diam (G)

= δmad,N
(

p⊕ p′, q⊕ q′
)

�

edge imbalance consistency δmad and δmad,N do not satisfy edge imbal-

ance consistency.

Proof. Consider the example in �gure 7a. It holds

|E (p) ∩ E (q) | = 3 > 1 = |E (p) ∩ E (r) |

and

|p| = |q| = |r|,

but

δmad (p, q) =
1

12
(1 + 0 + 0 + 0 + 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) =

29
12

and

δmad (p, r) =
1
12

(1 + 1 + 1 + 1 + 1 + 0 + 0 + 1 + 1 + 1 + 1 + 1) =
5
6
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(a) An example in which the matched average distance does not satisfy the edge imbal-

ance.

(b) An example in which the matched average distance does not satisfy the coincidence.

(c) An example in which the matched average distance does not satisfy the triangle in-

equality.

Figure 7: Examples for properties of the matched average distance.
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and therefore

δmad (p, q) > δmad (p, r) .

The same counterexample holds for δmad,N . �

boundedness δmad and δmad,N satisfy diam (G)-boundedness and 1-

boundedness, respectively.

Proof. By de�nition of the diameter of a graph G, for any two nodes v, w ∈ V, it

holds d (v, w) ≤ diam (G). Then, for any paths p, q ∈ PV in a graph G, it holds

δmad (p, q) =
1
k

k

∑
i=1

d
(
vpi , g

(
vqi

))
≤ 1

k

k

∑
i=1

max {d (v, w)|v, w ∈ V}

=
1
k

k

∑
i=1

diam (G) =
k · diam (G)

k
= diam (G)

Since

δmad,N (p, q) =
δmad (p, q)
diam (G)

≤ diam (G)

diam (G)
= 1,

δmad,N is 1-bounded.

With the same example as for the simple average distance, δmad and δmad,N sat-

isfy strong diam (G)-boundedness and 1-boundedness, respectively: Let v and

w be the nodes with d (v, w) = diam (G), then for p = (v) and q = (w),

δmad (p, q) = diam (G)

and

δmad,N (p, q) = 1.

�

non-negativity δmad and δmad,N satisfy non-negativity.

Proof. Since for any two nodes v, w ∈ V in an unweighted graph G, d (v, w) ≥
0, for any paths p, q, it holds δmad (p, q) ≥ 0 and δmad,N (p, q) ≥ 0. �

coincidence δmad and δmad do not satisfy coincidence.
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Proof. Consider the paths in �gure 7b. Let p = (v1, v2, v3, v4, v5, v6) and q =

(v4, v3, v5, v2, v6, v1) and therefore p , q. Let g : V (p) → V (q) and g′ :
V (q)→ V (p) as proposed in section 3.3. Then

δmad (p, q) = min

{
1

|p|+ 1

|p|+1

∑
i=1

d
(
vpi , g

(
vpi

))
,

1
|q|+ 1

|q|+1

∑
i=1

d
(
vqi , g

(
vqi

))}

=
1
6
·min {d (v1, g (v1)) + d (v2, g (v2)) + d (v3, g (v3)) +

d (v4, g (v4)) + d (v5, g (v5)) + d (v6, g (v6)) ,

d
(
v4, g′ (v4)

)
+ d

(
v3, g′ (v3)

)
+ d

(
v5, g′ (v5)

)
+

d
(
v2, g′ (v2)

)
+ d

(
v6, g′ (v6)

)
+ d

(
v1, g′ (v1)

)}
=

1
6
·min {d (v1, v1) + d (v2, v2) + d (v3, v3) +

d (v4, v4) + d (v5, v5) + d (v6, v6) ,

d (v4, v4) + d (v3, v3) + d (v5, v5) +

d (v2, v2) + d (v6, v6) + d (v1, v1)}

=
1
6
·min {0 + · · ·+ 0, 0 + · · ·+ 0} = 0

although p , q.

The same counterexample works for the normalized measure δmad,N . �

symmetry δmad and δmad,N satisfy symmetry.

Proof. This directly follows from the de�nition of δmad and δmad,N . �

triangle ineqality δmad and δmad,N do not satisfy the triangle inequal-

ity.

Proof. Consider the paths in �gure 7c, i.e. the paths

p = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v1), q = (v1, v10, v11, v12, v13) and

r = (v13, v14, v15, v16, v17, v18, v19, v20, v21, v13). The dashed gray edges repre-

sent further edges in the underlying graph. Furthermore, let g : V (p)→ V (q)
and g′ : V (p)→ V (r). It holds

δmad(p, q) =
1
9
· (d (v1, g (v1)) + d (v2, g (v2)) + d (v3, g (v3)) +

d (v4, g (v4)) + d (v5, g (v5)) + d (v6, g (v6)) + d (v7, g (v7)) +

d (v8, g (v8)) + d (v9, g (v9)) + d (v1, g (v1)))

=
1
9
· (d (v1, v1) + d (v2, v1) + d (v3, v1) + d (v4, v1) + d (v5, v1) +

d (v6, v1) + d (v7, v1) + d (v8, v1) + d (v9, v1) + d (v1, v1))

=
1
9
· (0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0)

=
8
9
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and

δmad (q, r) =δmad (r, q) =
8
9

,

but

δmad (p, r) =min
{

1
9
·
(

d (v1, g (v1)) + d (v2, g (v2)) + d (v3, g (v3))

+ d (v4, g (v4)) + d (v5, g (v5)) + d (v6, g (v6)) + d (v7, g (v7))

+ d (v8, g (v8)) + d (v9, g (v9)) + d (v1, g (v1))
)

,

1
9
·
(

d
(
v13, g′ (v13)

)
+ d

(
v14, g′ (v14)

)
+ d

(
v15, g′ (v15)

)
+ d

(
v16, g′ (v16)

)
+ d

(
v17, g′ (v17)

)
+ d

(
v18, g′ (v18)

)
+ d

(
v19, g′ (v19)

)
+ d

(
v20, g′ (v20)

)
+ d

(
v21, g′ (v21)

)
+ d

(
v13, g′ (v13)

) )}
=min

{
1
9
·
(

d (v1, v13) + d (v2, v13) + d (v3, v13) + d (v4, v13) + d (v5, v13)

+ d (v6, v13) + d (v7, v13) + d (v8, v13) + d (v9, v13) + d (v1, v13)
)

,

1
9
·
(

d (v13, v1) + d (v14, v1) + d (v15, v1) + d (v16, v1) + d (v17, v1)

+ d (v18, v1) + d (v19, v1) + d (v20, v1) + d (v21, v1) + d (v13, v1)
)}

=
1
9
· (4 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 4)

=
48
9

�
8
9
+

8
9
= δmad (p, q) + δmad (q, r) .

The same counterexample works for the normalized matched average distance.

�

further properties The basic idea of the matched average distance is

the same as the idea of the simple average distance – to measure how far the

nodes of the two paths are from each other on average. Though, the matched av-

erage distance includes a mapping which matches each node of the longer path

to the node of the shorter path which is its closest by distance. This modi�ca-

tion causes some advantages and some disadvantages. The costs to compute the

matched average distance for two paths increases in comparison to the simple

average distance, because for each node of the longer node, it needs to be com-

puted to which other node it can be matched. Additionally, it is not obvious that

the choice of the matching function g as it was made in section 3.3 is the optimal

one. This mapping, for example, allows that all nodes of one path are matched

onto only one node of the other path which might be an unwanted e�ect. Fur-

thermore, because the nodes of the longer path are matched onto the nodes of

the shorter path, the measure is not stable in the sense that small changes on the
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paths might yield big changes in the measure value: if – by deletion or insertion

of nodes – the formerly shorter path becomes the longer one, the mapping func-

tion might completely change which might give considerably di�erent values for

the distance measure of the paths. Additionally, integrating the matching func-

tion g into the average distance measure has the e�ect that two metric properties

which were satis�ed by the simple average distance, do not hold anymore for the

matched average distance, namely coincidence and the triangle inequality which

is why the matched average distance is not a metric.

3.4.3 Node set similarity

prefix and suffix consistency σnss satis�es pre�x and su�x consis-

tency.

Proof. We only show su�x consistency, the proofs for pre�x consistency are

similar.

It is needed to prove that for paths p, q ∈ PV and r ∈ PV with

(ωp, αr), (ωq, αr) ∈ E, it holds

σnss(p, q) ≤ σnss(p⊕ r, q⊕ r).

In the following, let Vp := V(p), Vq := V(q), Vr := V(r).
It holds

σnss(p⊕ r, q⊕ r) = |V(p⊕ r) ∩V(q⊕ r)|
= |(Vp ∪Vr) ∩ (Vq ∪Vr)|
= |(Vp ∩Vq) ∪Vr|
= |Vr|+ |Vp ∩Vq|︸       ︷︷       ︸

=σnss(p,q)

−|Vp ∩Vq ∩Vr|

= |Vr|+ σnss(p, q)− |Vp ∩Vq ∩Vr|

Because Vr ⊇ Vr ∩Vp ∩Vq and therefore |Vr| ≥ |Vr ∩Vp ∩Vq|, it holds

σnss(p⊕ r, q⊕ r) = σnss(p, q) + |Vr| − |Vp ∩Vq ∩Vr|︸                        ︷︷                        ︸
≥0

≥ σnss(p, q)

which was to show. �

insertion consistency σnss satis�es insertion consistency.

Proof. It needs to be shown that for any paths p, q, p′, q′, r ∈ PV which can

be concatenated to the paths p⊕ r ⊕ p′ and q⊕ r ⊕ q′ and p⊕ p′ and q⊕ q′,
i.e. {(ωp, αr), (ωq, αr), (ωr, αp′), (ωr, αq′), (ωp, αp′), (ωq, αq′)} ⊆ E, it holds

that the paths with the common subpath are more similar to each other than the

ones without the common subpath, i.e.

σnss(p⊕ p′, q⊕ q′) ≤ σnss(p⊕ r⊕ p′, q⊕ r⊕ q′).
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Since σnss is a set based measure, the proof from su�x consistency can be

adapted: It holds

σnss(p⊕ r⊕ p′, q⊕ r⊕ q′)

=
∣∣V(p⊕ r⊕ p′) ∩V(q⊕ r⊕ q′)

∣∣
=

∣∣(Vp ∪Vr ∪Vp′) ∩ (Vq ∪Vr ∪Vq′)
∣∣

=
∣∣((Vp ∪Vp′

)
∩
(
Vq ∪Vq′

))
∪Vr

∣∣
= |Vr|+

∣∣(Vp ∪Vp′) ∩ (Vq ∪Vq′)
∣∣︸                              ︷︷                              ︸

=σnss(p⊕p′,q⊕q′)

−
∣∣(Vp ∪Vp′) ∩ (Vq ∪Vq′) ∩Vr

∣∣
= |Vr|+ σnss(p⊕ p′, q⊕ q′)

−
∣∣(Vp ∪Vp′) ∩ (Vq ∪Vq′) ∩Vr

∣∣
Since (Vp ∪ Vp′) ∩ (Vq ∪ Vq′) ∩ Vr ⊆ Vr and therefore

|Vr| ≥
∣∣(Vp ∪Vp′

)
∩
(
Vq ∪Vq′

)
∩Vr

∣∣
, it holds

σnss(p⊕ r⊕ p′, q⊕ r⊕ q′)

= σnss(p⊕ p′, q⊕ q′) + |Vr| −
∣∣(Vp ∪Vp′

)
∩
(
Vq ∪Vq′

)
∩Vr

∣∣︸                                               ︷︷                                               ︸
≥0

≥ σnss(p⊕ p′, q⊕ q′) �

concatenation consistency σnss satis�es concatenation consistency.

Proof. Let

σnss(p⊕ p′, q⊕ q′)

=
∣∣V(p⊕ p′) ∩V(q⊕ q′)

∣∣
=

∣∣(Vp ∪Vp′) ∩ (Vq ∪Vq′)
∣∣

≥ min
{∣∣Vp ∩Vq

∣∣ ,
∣∣Vp′ ∩Vq′

∣∣} ,

since Vp ∩ Vq ⊆ (Vp ∪ Vp′) ∩ (Vq ∪ Vq′) and

Vp′ ∩Vq′ ⊆ (Vp ∪Vp′) ∩ (Vq ∪Vq′), and therefore

σnss(p⊕ p′, q⊕ q′) ≥ min
{

σnss(p, q), σnss(p′, q′)
}

. �

edge imbalance consistency σnss and σnss,N do not satisfy edge imbal-

ance consistency.

Proof. Consider the paths p, q, r in �gure 8a. It holds |p| = |q| = |r| and

|E(p) ∪ E(q)| = 1 > 0 = |E(p) ∪ E(r)|,

but

σnss(p, q) = 2 < 4 = σnss(p, r)

and

σnss,N(p, q) =
2
14

=
1
7
<

1
3
=

4
12

= σnss,N(p, r).

�
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(a) An example in which the node set similarity does not satisfy edge imbalance consis-

tency.

(b) An example in which the node set similarity does not satisfy coincidence.

Figure 8: Examples for properties of the node set similarity.

boundedness σnss and σnss,N satisfy |V|-boundedness and 1-boundedness,

respectively.

Proof. Since for any two paths p, q ∈ PV , Vp ∩Vq ⊆ V holds, σnss(p, q) ≤ |V|
follows directly. Similarly, and with |Vp ∩Vq| ≤ |Vp ∪Vq|, σnss,N(p, q) ≤ 1 fol-

lows. In any connected graphs, σnss satis�es strong |V|-boundedness, since there

is always a path p for which V(p) = V holds, then it follows

σnss(p, p) = |V(p)| = |V|.

In any graph, σnss,N satis�es strong 1-boundedness, because for any path p ∈
PV , it holds

σnss,N(p, p) =
|V(p)|
|V(p)| = 1.

�

non-negativity σnss and σnss,N satisfy non-negativity.

Proof. Since for any set M, |M| ≥ 0 holds, σnss ≥ 0 and σnss,N ≥ 0 holds. �

coincidence σnss and σnss,N do not satisfy coincidence.

Proof. Consider the paths in �gure 8b, i.e. let p = (v1, v3, v6, v4, v2, v5) and

q = (v1, v2, v3, v4, v5, v6). Assume, that the graph does not contain any further

nodes. Then

σnss(p, q) = |Vp ∩Vq| = |V|,
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but p , q. Furthermore,

σnss,N(p, q) =
|Vp ∩Vq|
|Vp ∪Vq|

=
|V|
|V| = 1,

but p , q. �

symmetry σnss and σnss,N satisfy symmetry.

Proof. For two paths p, q ∈ PV , it holds

σnss(p, q) = |Vp ∩Vq| = |Vp ∩Vq| = σnss(q, p)

and

σnss,N(p, q) =
|Vp ∩Vq|
|Vp ∪Vq|

=
|Vq ∩Vp|
|Vq ∪Vp|

= σnss,N(q, p)

�

triangle ineqality σnss satis�es the triangle inequality.

Proof. We will prove the statement by contradiction. Assume that there are paths

p, q, r ∈ PV for which the node set similarity does not satisfy the triangle in-

equality, i.e.

σnss(p, r) < σnss(p, q) + σnss(q, r)− C

for the C-bounded σnss with C = |V|. Then

|Vp ∩Vr| < |Vp ∩Vq|+ |Vq ∩Vr| − |V|
⇔ |V|+ |Vp ∩Vr| < |Vp ∩Vq|+ |Vq ∩Vr| (1)

Since 0 ≤ |V|+ |Vp ∩Vr|, it follows that

0 < |Vp ∩Vq|+ |Vq ∩Vr|.

Therefore, there are three cases,

(i) Vp ∩Vq , ∅ and Vq ∩Vr = ∅,

(ii) Vp ∩Vq = ∅ and Vq ∩Vr , ∅,

(iii) Vp ∩Vq , ∅ and Vq ∩Vr , ∅.

Case (i) From the fact Vp ∩ Vq , ∅, it follows that Vp , ∅ and Vq , ∅. Then

equation (1) becomes to

|V|+ |Vp ∩Vr| < |Vp ∩Vq|︸       ︷︷       ︸
>0

+ |Vq ∩Vr|︸       ︷︷       ︸
=0

⇒ |V|+ |Vp ∩Vr| < |Vp ∩Vq|︸       ︷︷       ︸
≤|V|
since

Vp∩Vq⊆V

⇒ |V|+ |Vp ∩Vr|︸       ︷︷       ︸
≥0

< |V|
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which is a contradiction.

Case (ii) Similarly to case (i).

Case (iii) Similarly to the cases before, from the fact that both intersections

are non-empty, it follows that the node sets of p, q and r can not be empty, i.e.

Vp , ∅ and Vq , ∅ and Vr , ∅, hence equation (1) turns to

|V|+ |Vp ∩Vr| < |Vp ∩Vq|︸       ︷︷       ︸
>0

+ |Vq ∩Vr|︸       ︷︷       ︸
>0

.

In order to bring this case to a contradiction, some changes to the node sets are

made which will not change the inequation, but will lead to a contradiction. It

can be observed that any changes of Vq will not in- or decrease the left side of the

equation. Furthermore note that adding elements to the set Vq will only increase

(and not decrease) the right side of the equation which preserves the inequality.

Therefore the set Vq′ := Vp ∪Vq ∪Vr is de�ned and get

|V|+ |Vp ∩Vr| < |Vp ∩Vq|+ |Vq ∩Vr|
≤ |Vp ∩Vq′ |+ |Vq′ ∩Vr|
= |Vp|+ |Vr|

⇔ |V| < |Vp|+ |Vr| − |Vp ∩Vr|
= |Vp ∪Vr| ≤ |V|

which is a contradiction. Therefore, such paths p, q, r for which the triangle in-

equality does not hold, can not exist. Hence, the triangle inequality holds for

σnss.

�

further properties The node set similarity is a set based measure which

simply counts how many nodes the two paths have in common, in the normalized

case, the number of common nodes is then divided by the number of nodes the

paths could have in common. Since it is a set based measure, the order of the

nodes in which they occur in the paths is totally neglected which is also the

reason why it does not satisfy coincidence: two paths are not necessarily the

same if they consist of the same set of nodes, the order in which they occur and

which edges the paths use, are also characteristics of paths which need to be

identical in order to satisfy equality. This additionally causes that there might

be cases in which neither a high value of the node set similarity nor a low value

have a signi�cant meaning: despite a high value, the paths can be di�erent, and

despite a low value, the paths might be considered as similar, for example if they

“run parallel” to each other. This is not measurable with the node set similarity

which is why it is important to carefully choose a similarity or distance measure

for an analysis in a application domain. Furthermore, the node set similarity is

not a metric because the coincidence property is not satis�ed. Still, the other

requirements for being a metric – non-negativity, symmetry, and the triangle

inequality – are satis�ed.
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3.4.4 Edge set similarity

The formulas for the node set similarity and the edge set similarity are of the

same structure, they are both a union of two sets – either the set contains nodes

or edges. Also the formulas of the normalized node set similarity and the normal-

ized edge set similarity have the same structure, each of them is the intersection

of two sets divided by the union of the same two sets. Therefore, in the following,

all proofs of properties which only use the properties of sets and do not use the

fact that the sets contain edges, can be transferred from section 3.4.3.

prefix and suffix consistency σess and σess,N satisfy pre�x and su�x

consistency.

Proof. We will show that σess satis�es su�x consistency, the proof for pre�x

consistency is similar.

It needs to be proven that for paths p, q, r ∈ PV with (ωp, αr), (ωq, αr) ∈ E,

it holds

σess(p, q) ≤ σess(p⊕ r, q⊕ r).

The proof is quite similar to the proof of pre�x consistency for the node set

similarity, but it needs to be considered that concatenating two paths might add

an additional edge to the edge sets.

In the following, let

Ep := E(p)

for any path p ∈ PV .

It holds

σess(p⊕ r, q⊕ r)

= |E(p⊕ r) ∩ E(q⊕ r)|
= |(Ep ∪ Er ∪ {(ωp, αr)}) ∩ (Eq ∪ Er ∪ {(ωq, αr)})|
= |((Ep ∪ {(ωp, αr)}) ∩ (Eq ∪ {(ωq, αr)})) ∪ Er|
= |Er|+ |Ep ∩ Eq|︸       ︷︷       ︸

=σess(p,q)

− | (Ep ∪ {(ωp, αr)}) ∩ (Eq ∪ {(ωq, αr)}) ∩ Er︸                                                         ︷︷                                                         ︸
=:R

|

= |Er|+ σess(p, q)− |R|.

Since R ⊆ Er, |Er| − |R| ≥ 0 holds, and therefore,

σess(p⊕ r, q⊕ r) = σess(p, q) + Er − |R|︸      ︷︷      ︸
≥0

≥ σess(p, q)

which was to show. �
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insertion consistency σess and σess,N do not satisfy insertion consis-

tency.

Proof. The reason why insertion consistency does not hold for the edge set simi-

larity, neither for the unnormalized nor for the normalized measure, is that inser-

tion of a common subpath r adds the edges of r to the paths, and might remove

one edge from both of the paths. The edge which connects the parts of the paths

between which the common subpath r is inserted might be removed from the

paths. If it happens that the insertion of r does not contribute any new edges in

the set of common edges, the removal of this one edge is critical and decreases

the edge set similarity of the two paths.

This case occurs in the example shown in �gure 9a. For a better readability, the

edges are drawn directed although we consider undirected graphs. Edges which

occur twice in a path are also drawn twice although they occur only once in the

graph, since we only consider simple graphs. Let

p = q = (v1, v2, v3)

drawn in blue,

p′ = (v4, v5, v6, v2, v3, v7, v8, v4, v9)

and

q′ = (v4, v5, v6, v2, v3, v7, v8, v4, v10)

drawn in green, and

r = (v7, v8).

Then,

p⊕ p′ = (v1, v2, v3, v4, v5, v6, v2, v3, v7, v8, v4, v9)

and

q⊕ q′ = (v1, v2, v3, v4, v5, v6, v2, v3, v7, v8, v4, v10)

and

σess(p⊕ p′, q⊕ q′) =
∣∣E(p⊕ p′) ∩ E(q⊕ q′)

∣∣ = 9

σess(p⊕ r⊕ p′, q⊕ r⊕ q′) =
∣∣E(p⊕ r⊕ p′) ∩ E(q⊕ r⊕ q′)

∣∣
=
∣∣(E(p⊕ p′) ∩ E(q⊕ q′)

)
\ {(v3, v4)}

∣∣ = 8

Therefore, for this example, it holds

σess(p⊕ r⊕ p′, q⊕ r⊕ q′) < σess(p⊕ p′, q⊕ q′).

For the normalized edge set similarity, the example in �gure 9a can also serve

as counterexample. There, it holds

σess,N(p⊕ p′, q⊕ q′) =
|E(p⊕ p′) ∩ E(q⊕ q′)|
|E(p⊕ p′) ∪ E(q⊕ q′)| =

9
11

σess,N(p⊕ r⊕ p′, q⊕ r⊕ q′) =
|E(p⊕ r⊕ p′) ∩ E(q⊕ r⊕ q′)|
|E(p⊕ r⊕ p′) ∪ E(q⊕ r⊕ q′)| =

8
10
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(a) An example in which the edge set similarity does not satisfy insertion consistency.

Figure 9: Examples for properties of the edge set similarity.

and

σess,N(p⊕ p′, q⊕ q′) =
9

11
>

8
10

= σess,N(p⊕ r⊕ p′, q⊕ r⊕ q′).

�

concatenation consistency σess satis�es concatenation consistency.

Proof. Let

σess(p⊕ p′, q⊕ q′) =
∣∣E(p⊕ p′) ∩ E(q⊕ q′)

∣∣
=
∣∣(Ep ∪ Ep′

)
∩
(
Eq ∪ Eq′

)∣∣
≥min

{
|Ep ∩ Eq|, |Ep′ ∩ Eq′ |

}
since

(Ep ∩ Eq) ⊆ (Ep ∪ Ep′) ∩ (Eq ∪ Eq′)

and

Ep′ ∩ Eq′ ⊆ (Ep ∪ Ep′) ∩ (Eq ∪ Eq′),

and therefore

σess(p⊕ p′, q⊕ q′) ≥ min
{

σess(p, q), σess(p′, q′)
}

.

�
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edge imbalance consistency σess satis�es edge imbalance consistency.

Proof. Given paths p, q, r ∈ PV with |p| = |q| = |r| and

|Ep ∩ Eq| > |Ep ∩ Er|,

it directly follows that

σess(p, q) = |Ep ∩ Eq| > |Ep ∩ Er| = σess(p, r).

�

boundedness σess and σess,N satisfy |E|-boundedness and 1-boundedness,

respectively.

Proof. Since for any paths p, q ∈ PV , it holds σess(p, q) = |Ep ∩ Eq| ≤ |E|
because Ep ∩ Eq ⊆ E, σess is E-bounded. There can be paths which contain all

edges of a graph, therefore, σess is also strongly |E|-bounded. Furthermore, σess,N

is 1-bounded, because σess,N(p, q) =
|Ep∩Eq|
|Ep∪Eq| ≤ 1, since Ep ∩ Eq ⊆ Ep ∪ Eq.

In connected graphs, σess also satis�es strong |E|-boundedness, since there is

always a path p with E(p) = E, then it holds

σess(p, p) = |E(p)| = |E|.

σess,N always satis�es strong 1-boundedness, since for any path p ∈ PV , it holds

σess,N(p, p) =
|E(p)|
|E(p)| = 1.

�

non-negativity σess and σess,N satisfy non-negativity.

Proof. For any set M, it holds |M| ≥ 0. Therefore, σess(p, q) ≥ 0 and σess,N ≥ 0.

�

coincidence σess and σess,N do not satisfy coincidence.

Proof. Consider any path p which does not contain all edges of the graph, i.e.

Ep ( E. Then σess(p, p) = |Ep| < |E| which contradicts the requirement for

coincidence. The normalized edge set similarity does not satisfy coincidence, ei-

ther, which can be seen by considering any path p and its inverse inv(p). Because

only paths in undirected graphs are analyzed, the edge sets of p and inv(p) are

the same, therefore p and inv(p) have a normalized edge set similarity of 1, i.e.

σess,N(p, inv(p)) = |Ep|
|Ep| = 1 although they are not equal. �

symmetry σess and σess,N satisfy symmetry.

Proof. For any paths p, q ∈ PV , it holds

σess(p, q) = |Ep ∩ Eq| = |Eq ∩ Ep| = σess(q, p)

and

σess,N(p, q) =
|Ep ∩ Eq|
|Ep ∪ Eq|

=
|Eq ∩ Ep|
|Eq ∪ Ep|

= σess,N(q, p). �
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triangle ineqality σess satis�es the triangle inequality.

Proof. The proof for the triangle inequality for edge set similarity is completely

the same as the proof that the node set similarity satis�es the triangle inequality

except that sets of edges instead of sets of nodes are considered. Though, the fact

that the sets contain nodes is not used in the proof, but properties of general sets.

Therefore, proving that the edge set similarity satis�es the triangle inequality can

be done in the same way than for the node set similarity. �

further properties Although the formulas for the node set similarity

and the edge set similarity look alike, it makes a di�erence whether the sets

of edges or the the sets of nodes of the paths are taken to compute a similarity.

While the node set similarity satis�es insertion consistency and do not satisfy

edge imbalance consistency, the edge set similarity behaves exactly contrarily.

The problem why the edge set similarity does not satisfy the property of insertion

consistency, but pre�x and su�x consistency, is that the de�nition of insertion

consistency allows the removal of one edge from the two paths. Although the in-

sertion of a subpath comes with the addition of the edges of the subpath and two

edges for concatenation, the edge set similarity might decrease after insertion.

This case happens when the inserted subpath and and the two additional edges

are already elements of the edge sets of the two paths, i.e. the insertion does not

contribute any new edges to the edge sets. Then the removal of the one edge is a

critical operation which decreases the edge set similarity. This case does not ap-

ply for the node set similarity because the node set similarity does not consider

edges, only nodes, and there is no node removed from the node sets by inserting

a subpath.

3.4.5 LCSS similarity

prefix and suffix consistency σlcss and σlcss,N satisfy pre�x and su�x

consistency.

Proof. As for the previous measures, we only show su�x consistency because

the proofs for pre�x consistency are very similar. For the proof that σlcss satis�es

pre�x consistency, we can make use of the properties of the function P(p, q)
which is the length of the longest common subsequence in p and q. It can be

observed that a common subsequence of two paths is preserved if nodes are

added to the paths. By adding nodes to a path (without removing any), the length

of the longest common subsequence can become larger, since the new nodes

can contribute to a common subsequence. This is also true if the added nodes

are already contained at any other position in the path. Hence, the length of a

common subsequence can not decrease by adding nodes to the paths, because

they can be but do not need to be included into a common subsequence. Then,
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for the unnormalized LCSS similarity, it holds for any paths p, q, r ∈ PV with

(ωp, αr), (ωq, αr) ∈ E,

σlcss(p⊕ r, q⊕ r) = P(p⊕ r, q⊕ r)

= P(p, q) + |r|+ 1

> P(p, q) = σlcss(p, q).

For the normalized measure, it holds

σlcss,N(p⊕ r, q⊕ r) =
P(p⊕ r, q⊕ r)

max {|p⊕ r|+ 1, |q⊕ r|+ 1}

=
P(p, q) + |r|+ 1

max {|p|+ 1, |q|+ 1}+ |r|+ 1
.

Therefore, since

max {|p|+ 1, |q|+ 1} ≥ P(p, q) and |r|+ 1 > 0

⇔ P(p, q) + |r|+ 1
max {|p|+ 1, |q|+ 1}+ |r|+ 1

≥ P(p, q)
max {|p|+ 1, |q|+ 1}

⇔ σlcss,N(p⊕ r, q⊕ r) ≥ σlcss,N(p, q)

which was to show. �

insertion consistency σlcss and σlcss,N satisfy insertion consistency.

Proof. For any paths p, p′, q, q′, r ∈ PV which can be concatenated to the paths

p⊕ p′, q⊕ q′, p⊕ r⊕ p′ and q⊕ r⊕ q′, the LCSS similarity measure shows the

following characteristic:

σlcss(p⊕ r⊕ p′, q⊕ r⊕ q′) = P(p⊕ r⊕ p′, q⊕ r⊕ q′)

= P(p⊕ p′, q⊕ q′) + |r|+ 1

> P(p⊕ p′, q⊕ q′) = σlcss(p⊕ p′, q⊕ q′).

The normalized measure also satis�es insertion consistency, since

σlcss,N(p⊕ r⊕ p′, q⊕ r⊕ q′) =
P(p⊕ r⊕ p′, q⊕ r⊕ q′)

max {|p⊕ r⊕ p′|+ 1, |q⊕ r⊕ q′|+ 1}

=
P(p⊕ p′, q⊕ q′) + |r|+ 1

max {|p⊕ p′|+ 1, |q⊕ q′|+ 1}+ |r|+ 1
.

Therefore, with the same principle as in the proof for su�x consistency,

max
{
|p⊕ p′|+ 1, |q⊕ q′|+ 1

}
≥ P(p⊕ p′, q⊕ q′) and |r|+ 1 > 0

⇔ P(p⊕ p′, q⊕ q′) + |r|+ 1
max {|p⊕ p′|+ 1, |q⊕ q′|+ 1}+ |r|+ 1

≥ P(p⊕ p′, q⊕ q′)
max {|p⊕ p′|+ 1, |q⊕ q′|+ 1}

⇔ σlcss,N(p⊕ r⊕ p′, q⊕ r⊕ q′) ≥ σlcss,N(p⊕ p′, q⊕ q′)

which was to show. �
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(a) An example in which the LCSS similarity does not satisfy edge imbalance consistency.

Figure 10: Examples for properties of the LCSS similarity

concatenation consistency σlcss satis�es concatenation consistency.

Proof. The observation that P(p, q) for two paths p, q ∈ PV cannot decrease by

adding nodes to any of the two paths, is also needed in this proof. Then, for σlss
and paths p, p′, q, q′ ∈ PV with (ωp, αp′), (ωq, αq′) ∈ E, it directly follows

σlcss(p⊕ p′, q⊕ q′) = P(p⊕ p′, q⊕ q′)

≥ max
{

P(p, q), P(p′, q′)
}

≥ min
{

P(p, q), P(p′, q′)
}

= min
{

σlcss(p, q), σlcss(p′, q′)
}

which was to show.

�

edge imbalance consistency σlcss and σlcss,N do not satisfy edge imbal-

ance consistency.

Proof. Consider the paths p, q, r in �gure 10a. It holds |p| = |q| = |r| = 9 and

|E(p) ∪ E(q)| = 2 > 0 = |E(p) ∪ E(r)|,

but

σlcss(p, q) = 3 < 5 = σlcss(p, r)

and

σlcss,N(p, q) =
3
10

<
1
2
=

5
10

= σlcss,N(p, r).

�

boundedness σlcss does not satisfy C-boundedness for any constant C,

σlcss,N satis�es 1-boundedness, though.

Proof. Consider the paths p = (v1 . . . vk) = q with (vk, v1) ∈ E. Let

pl := p⊕ · · · ⊕ p︸           ︷︷           ︸
l times
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It holds

σlcss(p, q) = k,

σlcss(p⊕ p, q⊕ q) = 2k,

. . .

σlcss(pn, qn) = nk.

Because n is not bounded, σlcss can not be bounded by any constant C.

The normalized σlcss,N is 1-bounded, though. For any paths p, q σlcss(p, q) ≤
min {|p|+ 1, |q|+ 1} and therefore,

σlcss,N(p, q) ≤ 1.

The normalized σlcss,N is even strongly 1-bounded, because for any path p ∈ PV ,

it holds

σlcss,N(p, p) =
P(p, p)
|p|+ 1

= 1.

�

non-negativity σlcss and σlcss,N satisfy non-negativity.

Proof. Non-negativity directly follows from the fact that P(p, q) ≥ 0 and

max {|p|+ 1, |q|+ 1} ≥ 0. �

coincidence σlcss does not satisfy coincidence, σlcss,N satis�es coincidence,

though.

Proof. σlcss can not satisfy coincidence because σlcss is not C-bounded for any

constant C and coincidence is only de�ned for strongly bounded similarity mea-

sures. For the normalized measure, for any paths p, q ∈ PV , it holds

σlcss,N(p, q) = 1

⇔ P(p, q)
max {|p|+ 1, |q|+ 1} = 1

⇔ P(p, q) = max {|p|+ 1, |q|+ 1}
⇔ vp1 = vq1 , . . . , vpk = vqk

⇔ p = q, because the graph is simple.

�

symmetry σlcss and σlcss,N satisfy symmetry.

Proof. Let

σlcss(p, q) = P(p, q) = P(q, p) = σlcss(q, p)

and similarly

σlcss,N(p, q) =
σlcss(p, q)

max {|p|+ 1, |q|+ 1} =
σlcss(q, p)

max {|q|+ 1, |p|+ 1} = σlcss,N(q, p).

P is symmetric because, otherwise there would be a common subsequence in p
and q which is not found in q and p which is not possible. �
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triangle ineqality σlcss does not satisfy the triangle inequality.

Proof. Since σlcss is not C-bounded, there is no appropriate formulation of the

triangle inequality for the LCSS similarity. �

further properties The unnormalized LCSS similarity is the only mea-

sure among the proposed measures which does not satisfy boundedness. This is

due to the fact that in the unnormalized LCSS similarity, one node can contribute

several times to the value of the LCSS similarity. While a single node appearing

several times in two paths contribute only once to the set based similarities, the

LCSS is computed di�erently: here, a single node can can be contribute arbitrar-

ily often to the value of the longest common subsequence of two paths. There-

fore, the property of boundedness can not be satis�ed by the unnormalized LCSS

similarity. From the fact that the unnormalized LCSS similarity does not satisfy

boundedness, it follows directly that it also does not satisfy coincidence and the

triangle inequality because these properties are only appropriate for C-bounded

similarity measures. The normalized LCSS similarity on the other hand does sat-

isfy boundedness and also coincidence.





4
C L U S T E R I N G PAT H S B Y T H E I R S I M I L A R I T Y

The previous chapter introduced several distance and similarity measures for

paths and checked them for their properties. The goal is to group paths according

to their similarity. Therefore, the following section gives an overview of existing

approaches to cluster data, before a description of the available path data is given.

4.1 clustering approaches

The main commonality of all clustering algorithms is the task of, given a set of n
objects, �nding groups of objects such that the objects within a group are similar

to each other while the di�erent groups are as dissimilar as possible. Although

the general idea of clustering is very intuitive, the methods which are used are

manifold: there is not the one correct clustering algorithm, each one is applica-

ble in certain scenarios and not applicable in others. It is also important to note

that there is not even the one best grouping of a given data set. For a �xed set of

objects, there might be several meaningful groupings of which each one might

re�ect a di�erent aspect of the objects’ properties. Therefore, there are many ap-

proaches, methods and algorithms available, for example depending on (i) which

requirements are put on the structure of the group (for example, if the groups

are allowed to be overlapping or need to be a partition of the set of objects),

(ii) which kind of data are available, or (iii) which further knowledge of the data

is available. They all have in common that they are given a set of n objects and

return groups of the objects. The objects might be represented by m attributes

such that the algorithm is given an n×m matrix of object attribute values. It is

also possible that the algorithm is only given the distance or similarity of each

pair of objects, i.e. a n× n matrix of similarity or distance values. The latter is

the case in the clustering of paths in this thesis.

In section 2.1, we presented the work of Kleinberg [23] who developed an ax-

iomatic framework for clustering and was able to show that there does not exist

a clustering function which satis�es scale-invariance, richness, and consistency.

This is one of the very few works about clustering which approaches the topic

from an abstract view instead of a technology-, data- or algorithm-driven way.

The following section, however, is meant to give a short overview of the avail-

able methods of �nding a clustering of objects in order to justify our choice of

methods for the results presented in section 4.4. More detailed explanations are,

for example, given in various reviews [2, 21, 14, 16].

63
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4.1.1 Methods of clustering

There are several criteria by which the available methods of clustering can be

distinguished, the most common one is the underlying model on which the clus-

tering algorithm is based on. There are

◦ hierarchical approaches

◦ centroid-based approaches

◦ distribution-based approaches

◦ density-based approaches

Hierarchical clustering approaches operate on a matrix of distance or similarity

values for each pair of objects. There are agglomerative and divisive hierarchical

clustering methods. In both cases, a binary tree is built whose leaves are the n
objects and the inner leaves represent merging or dividing of existing clusters.

The tree represents the procedure of hierarchical clustering: in agglomerative

approaches, the tree is built from the bottom to the top, i.e. existing clusters are

successively merged, in divisive methods, the tree is constructed from the top to

the bottom, i.e. existing clusters are successively divided. Hence, each level of the

tree represents one stage of the clustering procedure, all objects which are in one

subtree at this stage, are in one cluster in that clustering stage. To be precise, an

agglomerative hierarchical clustering methods starts with n clusters, each con-

taining exactly one object. In each step, the clusters with the largest similarity or

smallest distance are merged to one cluster. This procedure is continued until all

clusters are merged to one which contains all n elements. From this conceptual

description, there are already some observations about this approach possible: a

big advantage and a big disadvantage of hierarchical clustering methods is the

property that objects do not change their cluster identity during the (agglom-

erative) clustering process – objects which are put into the same cluster in the

beginning of the process, will stay in the same cluster. This means early mis-

takes can not be corrected later in the process and might decrease the clustering

quality. On the other hand, the decisions made during the process are permanent

which enormously decreases the number of possibilities which need to be con-

sidered in later stages of the algorithm. A further advantage and disadvantage is

the fact that the algorithm does not determine an appropriate number of clusters.

This means that the number of clusters does not need to be known in advance,

but also that the number of clusters, i.e. the height where the tree needs to be

cut in order to get the respective clusters, needs to be determined afterwards.

In the description of the agglomerative hierarchical clustering method above,

it is left open how to determine the most similar pair of clusters for merging.

There are three common approaches to determine which two clusters are the

most similar:

◦ Single-linkage methods The distance or similarity of two clusters is de�ned

as the distance of their closest members or the similarity of their most sim-

ilar members, i.e. for the two clusters C1 and C2 and a distance function δ

on the objects, δ(C1, C2) := mini∈C1,j∈C2 δ(i, j), and for a similarity func-

tion σ on the objects, σ(C1, C2) := maxi∈C1,j∈C2 σ(i, j).
◦ Complete-linkage methods The distance or similarity of two clus-

ters is de�ned as the distance of their members which are furthest
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apart or the least similar, i.e. δ(C1, C2) := maxi∈C1,j∈C2 δ(i, j) and

σ(C1, C2) := mini∈C1,j∈C2 σ(i, j).
◦ Average-linkage methods Instead of considering the members of the clus-

ters which are most extreme, the average-linkage method considers

how far the members of C1 are in average to the members of C2, i.e.

δ(C1, C2) =
1

|C1|·|C2| ∑i∈C1 ∑j∈C2
δ(i, j).

Non-hierarchical clustering methods have in common that they start with an

(often randomly selected) initial clustering of the objects and the algorithm then

alters the objects’ cluster membership in order to �nd a better partition. By which

criterion the partition is optimized then depends on the method.

The idea of centroid-based clustering methods is to represent each cluster by

its “center” and in each step, the objects are assigned to the cluster whose center

is closest to them. The general procedure for iterative centroid-based clustering

methods is the following as described by Jain and Dubes [16]:

(i) select an initial partition with k clusters.

(ii) generate a new partition by assigning each object to the cluster which

center is closest.

(iii) compute new cluster centers as centroids of the clusters.

(iv) repeat steps (ii) and (iii) until an optimum value of the criterion function

is found.

(v) adjust number of clusters by merging and splitting existing clusters or by

removing small or outlier clusters.

The commonly used k-means clustering algorithm (which goes back to Stein-

haus [42] and Lloyd [33]) for example, assigns the objects to the clusters such

that the sum of squared errors within the cluster is minimized, i.e. the sum of

the squared distances of each object to its cluster center. Formally, for any set

of objects S, any k ≥ 2 and any distance function d : S × S → R, initially k
centroid points T ⊆ S are chosen for which the function Λd(T) = ∑i∈S d2(i, T)
with d(i, T) = minj∈T d(i, j) is minimized. Then, each object is assigned to that

element of T which is closest to it [23]. This procedure is repeated until the par-

tition does not change anymore. It can be shown that the algorithm always �nds

an at least local optimum.

Further clustering approaches include distribution-based and density-based ap-

proaches which make di�erent assumptions of the data. In distribution-based

approaches, it is assumed that objects in the same cluster come – most likely –

from the same distribution, and clusters are determined based on this assump-

tion, for example by the expectation-maximization-algorithm [8]. Density-based

approaches [24] consider clusters as areas with a higher density of objects, which

is for example implemented in the DBSCAN algorithm by Ester et al. [9].

4.2 available data

This section contains a description and a summary of the data set that is used

to cluster paths. The following subsections contain information about the data’s

source, the preprocessing steps and a summary of its structure.



66 clustering paths by their similarity

4.2.1 Source and summary of the data

Figure 11: An example for

a Rush Hour board. The

yellow car needs to be re-

moved from the board.

We are testing the proposed similarity and distance

measures and the clustering approach on paths in

a network which represents the problem space of a

game. We consider the board game Rush Hour1
which

is a one-player block sliding puzzle. It takes place on a

board of 6× 6 cells with one designated exit on which

blocks are placed which can have a size of 1× 2, 1× 3,

2× 1 or 3× 1 cells. The board and the blocks repre-

sent a parking lot with parking cars. The goal of the

game is to �nd a sequence of moves which allows a

particular car (which will be called target car in the

following) to exit the board through the designated

exit. An allowed move is to move a car at a time an

arbitrary number of cells forwards or backwards, but

not sideways. An example for a possible Rush Hour game is shown in �gure 11.

We generate a graph from a Rush Hour start con�guration by the following:

let C be the set of all possible Rush Hour con�gurations for a board of the given

size. We de�ne move : C→ P(C), withP(C) the power set of C, as the function

which returns all con�gurations which are reachable from a given con�guration

by an allowed move. Furthermore, for a con�guration set C ⊆ C, we can de�ne

inductively

move0(C) := C

moven(C) := moven−1(C) ∪
⋃

v∈moven−1(C)

move(v)

the con�gurations which can be reached in at most n moves.

Then, for a board con�guration c ∈ C, we de�ne the associated problem space

as Gc := (Vc, Ec) with

Vc = movem({c})

with m ∈ N such that

movem({c}) = movem+1({c})

(such a m always exists) and with

Ec = {(c1, c2) ∈ Vc ×Vc|c2 ∈ move(c1)}.

Hence, the problem space for a given board con�guration consists of all board

con�gurations which can be reached from the given con�guration by allowed

moves. We consider a Rush Hour game instance as solved when the cars on the

board are in such positions that the target car can be removed from the board

with one additional move. We call con�gurations in which this is the case, solu-
tion states or �nal states Vc

f ∈ Vc
. With the concept of the problem space, solving

1 The game was invented by Nob Yoshigahara and is distributed by ThinkFun Inc. and HCM

Kinzel (Germany).
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a Rush Hour game instance can then be understood as �nding a path from c to

a solution state v f ∈ Vc
f , i.e. a path p ∈ ⋃v f∈Vc

f
Pc→v f . In the optimal case, the

found path is as short as possible.

The data set we used for analysis was collected by Pelánek and Jarušek from

the Masaryk university in Czech republic [18]. They developed a problem solv-
ing tutor2

which is a web-based tool for learning by problem solving and is used

in educational contexts. Students who use the system can solve problems in a

game-based manner while the system is adapting to the student’s capabilities

and recommending game instances of an appropriate di�culty. A detailed de-

scription can be found in Jarušek [17].

Among others, the system contains Rush Hour game instances of di�erent

degrees of di�culty. We got access to the log data of all users of the system how

they solved (or attempted to solve) the Rush Hour instances. The log data were

accessed on January 09, 2015 and contain for each user, each instance and each

trial, all moves done by the user with a time stamp for each move. The next

subsection describes all necessary preprocessing steps of the raw log data.

2 It can be found under tutor.�.muni.cz.

game nodes edges game nodes edges

Game 121 4405 33 302 Game 561 4374 37 078

Game 152 3008 25 288 Game 578 2853 24 732

Game 197 2962 26 496 Game 579 4573 35 232

Game 19 1169 8620 Game 5 5872 51 603

Game 202 4635 38 176 Game 64 2952 21 017

Game 246 3003 22 418 Game 655 1075 11 599

Game 254 8648 61 530 Game 674 6090 53 537

Game 260 3095 24 919 Game 692 887 5226

Game 266 451 3983 Game 722 2241 14 517

Game 27 10 653 101 441 Game 723 830 7978

Game 326 3493 27 529 Game 727 2784 29 481

Game 32 2954 27 900 Game 765 1327 10 143

Game 342 364 2996 Game 779 2376 18 892

Game 355 9121 85 951 Game 820 7235 63 551

Game 357 4426 37 649 Game 841 1050 5957

Game 37 950 6461 Game 878 4259 35 858

Game 393 4533 30 587 Game 906 864 6934

Game 441 4533 30 587 Game 939 3268 22 956

Game 551 8542 88 706 Game 96 496 2849

Game 559 5322 51 977 Game 981 4925 35 126

Table 3: The sizes of the problem spaces of the games.

http://tutor.fi.muni.cz
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4.2.2 Preprocessing the data

We performed the following data processing steps.

◦ Extract the level information For each of the 61 game instances, we ex-

tracted the information of how the start con�guration looks like, i.e. how

many cars of which size are placed on which position on the board. This

gives a set of con�gurations C of size 61.

◦ Compute the problem spaces For each con�guration c ∈ C, we computed

the associated state space if it was feasible. 21 con�gurations were rejected

because their problem spaces are too large for a further feasible analysis.

Table 3 shows the size of the problem spaces of the remaining con�gura-

tions, i.e. the number of contained nodes and edges.

◦ Extract and �lter paths Any user who attempts or achieves to solve a game

instance creates a path in the problem space of the con�guration. For each

user, each con�guration and each attempt, we extract the generated path

from the log data. Any move which is done after a �nal state was reached

is not considered anymore, but the path is considered as solved path. Prob-

ably due to temporary network connections problems, some paths are in-

complete or inconsistent. Therefore, all extracted paths are checked for

completeness and consistency (i.e. , that the timestamps are consistent,

there are no moves missing, all done moves are allowed moves), and all

inconsistent or incomplete paths are excluded from the further analysis.

Table 4 shows for each con�guration how many paths were extracted and

how many paths remain after �ltering the inconsistent and incomplete

ones out.

◦ Cut paths To be able to compute the simple average distance as it is de�ned

in section 3.3.1, the paths need to have equal length. However, even for one

con�gurations, the extracted paths have a broad range of length as it can

be seen in �gure 12. We therefore cut all extracted paths of each con�gu-

ration c ∈ C to a particular length kc and consider only the �rst kc nodes

of the paths. For determining the cutting point kc for each con�guration,

the following idea is used: if a cutting point kc is chosen, all paths which

are shorter than kc are completely rejected because they are too short; all

paths which are longer than kc are cut to this length and all path nodes by

which the paths are longer than kc are rejected. For this reason, kc should

not be chosen too large because then many short paths are rejected, but

also not too small because then the major part of the paths is cut o� and the

paths become meaningless. In order to �nd a good choice for this trade-o�,

we chose the cutting point kc for each con�guration which minimizes the

number of rejected path nodes. It should be kept in mind that this method

especially rejects all optimal solutions. But since the optimal solutions are

only a small part of the paths, this rejection is acceptable.An example for

this method is shown in �gure 13. With increasing cutting point, the num-

ber of rejected paths from too short paths increases, while the number of

rejected nodes from too long paths decreases. The sum of both numbers

has a minimum, the corresponding cutting point for the con�guration is

chosen, and all available paths are cut to this length. Table 4 shows the
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Figure 12: The distribution of the path lengths for all extracted paths, after �ltering. The

colors encode whether the paths ends in a �nal state or not. The dashed lines show the

mean path length for all (black), solving or non-solving (skipped) paths.

chosen cutting point for each con�guration and how many paths remain

for further analysis.

The following subsection will give an exploratory overview of the data which

were extracted and preprocessed in the way described above.

4.2.3 Summary of the extracted data

This subsection is meant to give an impression of the available extracted path

data and their underlying networks. A purely number-based overview of the

extracted paths and networks can be found in the tables 3 and 4. A more visual

summary is given in the following.

the underlying networks As already mentioned, the problem spaces

of the available con�gurations contain several thousands nodes which makes it

di�cult to visualize them properly. For a con�guration with a relatively small

problem space, a visualization of the problem space is shown in �gure 14. The

nodes which occur in at least one of the extracted paths are coloured in green,

yellow, red, or blue, respectively, depending whether they are the start con�gu-

ration (green), they are nodes in which at least one user canceled the game (red),

or whether they are �nal states (blue). All nodes which do not occur in any of the

extracted paths are shown in grey. The edge colour also depends on whether this

edge is part of any of the extracted paths or not. The edges are drawn as often

as they occur in the extracted paths. It is obvious that this visualization is only

useful to get a �rst impression of the state space and the contained paths and

only applicable to small state spaces. Nonetheless, �gure 14 clearly shows that

the user do not explore the whole state space: even for more than 2500 paths (of

which over 2000 are solved) in a state space of over 450 nodes, about 190 nodes

do not occur in any of the paths.
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number of available paths optimal cut

total after �ltering after cutting path threshold

total solved not solved total solved not solved length

Game 121 331 270 39 231 70 33 37 47 112

Game 152 241 187 59 128 102 52 50 36 62

Game 19 762 662 213 449 308 185 123 31 48

Game 197 218 167 46 121 81 42 39 44 66

Game 202 417 359 89 270 153 76 77 41 61

Game 246 637 552 158 394 315 153 162 33 45

Game 254 463 394 40 354 102 35 67 43 82

Game 260 306 247 54 193 103 49 54 48 66

Game 266 2643 2523 2098 425 1887 1763 124 8 11

Game 27 262 209 68 141 125 67 58 44 61

Game 32 2383 2284 1917 367 2050 1873 177 8 10

Game 326 358 290 48 242 92 40 52 50 84

Game 342 3271 3171 3044 127 3132 3044 88 3 4

Game 355 218 154 53 101 84 47 37 26 64

Game 357 261 205 58 147 70 39 31 42 105

Game 37 2633 2458 1697 761 1979 1485 494 11 14

Game 393 233 175 53 122 104 53 51 49 65

Game 441 238 178 59 119 94 54 40 49 76

Game 5 1760 1614 428 1186 757 408 349 25 32

Game 551 2706 2589 2345 244 2517 2345 172 5 6

Game 559 2495 2369 2024 345 1963 1754 209 7 11

Game 561 2432 2259 1258 1001 1177 518 659 9 20

Game 578 1005 904 230 674 497 228 269 31 36

Game 579 603 511 150 361 298 141 157 30 38

Game 64 3064 2934 2592 342 2849 2592 257 5 6

Game 655 2908 2769 2556 213 2402 2302 100 7 10

Game 674 370 306 90 216 161 82 79 44 55

Game 692 475 404 89 315 161 86 75 46 53

Game 722 202 156 47 109 72 43 29 48 76

Game 723 2876 2704 1472 1232 1909 1388 521 13 16

Game 727 2554 2397 1980 417 1886 1641 245 8 11

Game 765 534 462 109 353 195 91 104 30 48

Game 779 1585 1429 399 1030 635 387 248 29 36

Game 820 259 212 44 168 67 32 35 41 92

Game 841 258 203 65 138 115 62 53 45 59

Game 878 1064 926 306 620 573 247 326 20 36

Game 906 2214 2013 520 1493 1060 519 541 24 29

Game 939 1393 1198 301 897 677 211 466 21 32

Game 896 2254 2164 1746 418 1980 1746 234 8 9

Game 981 2156 1993 1178 815 1306 907 399 9 20

Total 51 042 47 001 29 722 17 279 34 108 26 820 7288

Table 4: Summary of the available paths: it is shown how many paths for each game

are available by the used data set. The �rst column shows the total number, the second

column contains the number of paths after the inconsistent and incomplete paths were

�ltered out, the third column contains the number of remaining paths after the �ltered

paths were cut to equal length according to the described method. The determined cut

threshold to which length the paths are cut can be seen in the last column of the table.

Furthermore, the length of the optimal solution path can be found in the second but last

column.
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Figure 13: The number of rejected nodes with varying cutting point: when the cutting

threshold is large, all nodes of paths which are shorter than the cutting point are rejected;

when the cutting point is small, all nodes by which the longer paths are longer than the

cutting point are rejected. The absolute number of rejected nodes for the respective

con�guration is plotted against the cutting point, either for the too short paths (in blue),

or for the too long paths (in green), or the sum of both (in red).

properties of the extracted paths In section 1.3, we de�ned several

path properties, particularly that paths can be simple and elementary, i.e. each

node or edge occurs at most once in a path. For the present data set where a

path represents a solution path for a game, a path which is not simple or not

elementary is clearly not an optimal path, since such a path contains at least one

cycle, and this can not be the case in an optimal solution path.

Figure 15 shows the composition of the available paths with respect to the

properties of being simple and/or elementary, once for all complete paths (�g-

ure 15a) and once for the paths which were cut according to the described

method (�gure 15b). For the latter, only the part of the cut paths which is not

rejected is checked for being simple and/or elementary, any edge or node which

is occurring more than once in the removed part of the paths, is not considered.

There are several insights that can be gained from these two visualizations: at

�rst, it gives an impression of the dimension of the available path data, particu-

larly the large di�erences in available paths for the di�erent con�gurations, i.e.

there are either around 2000 paths available or around 200. This is due to the

way the data was collected: the problem solving tutor where the path data is

extracted from, suggests games to the user according to the user’s skill, starting

from easier games continuing with more di�cult games. Hence, the easier games

in the beginning are played by far more users than the other ones. There is even a

subset of con�gurations which is not accessible for the user before certain other

games are solved. Knowing this, the large di�erences between the number of

available paths is not surprising. Additionally, the �gure visualizes in which pro-

portions the extracted paths are (i) simple and elementary, or (ii) simple, but not

elementary, or (iii) neither simple nor elementary. It is astonishing how many of
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(b) For the cut paths.

Figure 15: An overview of how many of the extracted paths are simple and/or elementary,

as de�ned in section 1.3.

the extracted paths are neither simple nor elementary. Nevertheless, it is strik-

ing that the smaller the number of available paths is, the larger is the fraction of

paths which are neither simple nor elementary. Comparing �gure 15a and 15b

makes clear that cutting the paths – and hereby removing short paths and remov-

ing the last part of the long paths – does not signi�cantly change the proportions

of how many paths are elementary and/or simple.

Figure 16 shows the relationship of the length of the available paths with the

length of the shortest path from the start con�guration to a �nal state. Figure 16a

and 16a show this relationship for all paths, once for the solving paths, once for

the non-solving paths. Figure 16c and 16c contains the same for the cut paths. It

is not surprising that the length of the extracted paths for the di�erent con�gura-

tions increases with increasing length of the optimal path for the corresponding

con�guration. However, especially in �gure 16a and 16c, it is noticeable that

simple and elementary paths only occur in problem spaces with a rather short

optimal solution path. The longer the optimal solution path becomes, the more

probable it is that the found solution paths are not elementary anymore. For

con�gurations with an optimal solution longer than 30 steps, there are almost

no paths anymore which solve the game and are elementary and simple.

We want to analyze the available paths for more properties than length and be-

ing simple and/or elementary. Therefore, for a path, we introduce the following

properties among which the �rst four were already mentioned:

◦ Length is the number of (not necessarily distinct) contained edges in the

path.

◦ isSolved indicates whether the path contains a �nal state or not.

◦ isSimple indicates whether the path is simple

◦ isElementary indicates whether the path is elementary

◦ MaxNodeVisitation is the maximum value of the node visitation values for

all nodes contained in the node set of the path, where the node visitation

is the number of times this node is contained in the path.



74 clustering paths by their similarity

10

100

0 10 20 30 40 50
Optimal path length

P
at

h 
le

ng
th

Path properties
Not simple, not elementary
Simple, not elementary
Simple and elementary

Length of the solving paths

(a) For all solving paths, with linear regres-

sion lines for each type of paths.

10

100

1000

0 10 20 30 40 50
Optimal path length

P
at

h 
le

ng
th

Path properties
Not simple, not elementary
Simple, not elementary
Simple and elementary

Length of the non−solving paths

(b) For all non-solving paths, with linear re-

gression lines for each type of paths.

10

100

1000

0 10 20 30 40 50
Optimal path length

P
at

h 
le

ng
th

Path properties
Not simple, not elementary
Simple, not elementary
Simple and elementary

Length of the cut solving paths

(c) For all cut solving paths, with linear re-

gression lines for each type of paths.

10

100

0 10 20 30 40 50
Optimal path length

P
at

h 
le

ng
th

Path properties
Not simple, not elementary
Simple, not elementary
Simple and elementary

Length of the cut non−solving paths

(d) For all cut non-solving paths, with linear

regression lines for each type of paths.

Figure 16: The relationship of the length of the extracted paths to the length of the op-

timal path in the respective problem space, once for the solving and non-solving paths.

The colour encodes whether the path is simple and/or elementary. Note the logarithmic

scale on the vertical axis and note that for the lower two �gures, the paths of one con�g-

uration were cut to equal length, which is why all paths of one con�guration are jittered

in horizontal and vertical direction in these two plots.
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◦ MeanNodeVisitation is the mean value over all node visitation values of all

nodes contained in the node set of the path

◦ MedianNodeVisitation is the median of the node visitation values for all

nodes contained in the node set of the path

◦ OnceSeenStates is the number of nodes in the node set of the path which

are contained exactly once in the path

◦ TwoTimesSeenStates is the number of nodes in the node set of the path

which are contained exactly twice in the path

◦ ThreeTimesSeenStates is the number of nodes in the node set of the path

which are contained exactly three times in the path

◦ FourTimesSeenStates is the number of nodes in the node set of the path

which are contained exactly four times in the path

◦ MoreThanFourTimesSeenStates is the number of nodes in the node set of

the path which are contained more than four times in the path

Figure 17 shows how these path properties are distributed in the available

data set. In �gure 17a, for each of the introduced properties, its distribution over

all available (uncut) paths is shown. The scales on the horizontal axes are loga-

rithmic, except for the scales on the plots for the binary properties (i.e. isSolved,

isSimple and isElementary). It can be seen that the distribution of the length and

the number of exactly once seen states is almost the same and has a peak around

10. Additionally, there are about twice as many solved paths than not solved

paths, about two third of the available paths are simple, almost half of the paths

is elementary. All the other properties which are related to the concept of node

visitation, show a maximal occurrence at value 1 and the occurrence decreases

for an increasing value.

In order to see whether the proposed properties are related to other, the cor-

relation of all pairs of the properties is computed, for all paths of all games and

separately for each game. Figure 17b shows the values of the Pearson correlation

coe�cient of all pairs of properties over all paths of all con�gurations, �gure 17c

shows the respective values for an exemplary con�guration, both visualized in

a heat map where a light blue corresponds to a value of 1, i.e. a high positive

correlation, and a dark blue corresponds to a value of -1, i.e. a negative cor-

relation. It is striking that the two heat maps (and also the heat maps for the

remaining games which are not shown) have the same colour patterns. This in-

dicates that the relations of the properties are similar for all con�gurations and

do not di�er much for the di�erent con�gurations. Some of the entries of the

heat map are striking: The properties isSimple and isElementary are negatively

correlated with the properties Length, MaxNodeVisitation, MeanNodeVisitation
and TwoTimesSeenStates which is plausible because as soon as a path has a value

greater than 1 in any of the latter properties, the path can not be elementary

and is probably also not simple. Accordingly, the properties isSimple and isEle-
mentary show a positive correlation with the property OnceSeenStates, since: the

more states are exactly used once, the less states are used more than once (this

negative correlation is also recognizable), and the higher the probability that the

path simple or even elementary. Furthermore, the length of a path is positively

correlated with the properties MaxNodeVisitation and MeanNodeVisitation which

is an interesting observation and is consistent with �gure 16: the longer a path
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(c) The Pearson correlation coe�cient for

the path properties of all paths for a particu-

lar con�guration, visualized in a heat map.

Figure 17: An overview of the properties of the available path data.
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is, the higher the probability that nodes are used more than once and the path is

not optimal anymore.

4.3 used algorithms

In this section, the used algorithms, tools and methods in the implementations

are described. The following tasks were implemented for this thesis:

◦ Computation of the state spaces The problem spaces for the set of con-

�gurations are computed by a breadth-�rst search approach: having im-

plemented the game logic of Rush Hour, for each con�gurations all pos-

sible successor con�gurations (all states that can be reached within one

allowed move) can be enumerated. Starting from the start con�gurations,

the whole state space can be explored by a breadth-�rst search. We here

assume that a solution state does not have any successor states, therefore,

states which can only be reached after a �nal state, are excluded from the

state space.

◦ Visualization of the state spaces and the contained paths For the visualiza-

tion of the state space and the contained paths as it can be seen in �gure 14,

we implemented a method which writes out the computed state spaces and

extracted paths in gml-format. The layout of the graph is then done by the

graph editing tool yEd3
.

◦ Computation of the proposed similarity measures for the extracted paths The

implementation of most of the introduced similarity and distance mea-

sures for paths is straightforward. For the implementation of the matched

average distance, for each node of the longer path, the distance to the clos-

est node of the shorter path needs to be found. Naively, this can be done by

starting a breadth-�rst-search from each node of the longer path which is

terminated as soon a node from the other path is discovered. Furthermore,

the breadth-�rst-search can keep track of the distance of the explored

nodes from the starting node. Further improvement of this algorithm is

left for future work. The computation of the LCSS similarity can be done

by using a dynamic programming approach described by Cormen [6].

◦ Clustering of the paths Clustering of the paths based on the pair-wise sim-

ilarities and distances is done by the hclust method from the R-package

stats.

4.4 results of clustering paths

We computed the similarity and distance measure, proposed in section 3.3, for all

available paths described in section 4.2. We restricted the analysis to the paths

which were cut to equal length as described before. The goal for future work

with this data will be to group the paths in groups according to their similarity

in order to be able to distinguish paths with di�erent properties, for example

whether the path describes a solved game or not. As a �rst approach, we present

the following results which are still preliminary and need further re�nement.

3 see for example here: https://www.yworks.com/

https://www.yworks.com/
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4.4.1 Method

For each similarity and distance measure and for each game, a matrix is com-

puted which contains the measure’s values for each pair of available paths for

the respective game. Furthermore, for each path, there are several binary proper-

ties known: whether the path is solved or not, whether it is simple, and whether

it is elementary. As a �rst simple approach to cluster the available paths of each

game, we used a hierarchical clustering approach. The matrices with the similar-

ity and distance measure values for each game are preprocessed:

(i) the normalized distance measure values are left unchanged.

(ii) the unnormalized distance measure values are scaled to the interval [0, 1]
by the following transformation: let Dc ∈ Rn×n

be the matrix containing

the distance values for the n paths of a con�guration c ∈ C . We transform

the matrix to the matrix Dc
n by substituting each entry Dc

ij of the matrix

Dc
by the value

Dc
ij −mink,l∈{1,...,n} Dc

kl

maxk,l∈{1,...,n} Dc
kl −mink,l∈{1,...,n} Dc

kl

and then get Dc
N ∈ [0, 1]n×n.

(iii) the normalized similarity measure values are transformed to the associated

distance value: let Sc ∈ [0, 1]n×n
be the matrix containing the similarity

values for the n paths of a con�guration c ∈ C . We transform the matrix

by substituting each entry Sc
ij by 1− Sc

ij and get the matrix Sc
N .

(iv) the unnormalized similarity measure is �rst scaled to the interval of [0, 1],
then transformed to its associated distance measure, i.e. let Sc ∈ Rn×n

be the matrix with the similarity measure values for the n paths of the

con�guration c ∈ C . We transform the matrix by substituting each entry

Sc
ij by

1−
Sc

ij −mink,l∈{1,...,n} Sc
kl

maxk,l∈{1,...,n} Sc
kl −mink,l∈{1,...,n} Sc

kl

and get the matrix Sc
N ∈ [0, 1]n×n

.

The therefore obtained matrices all contain values from the interval [0, 1]
which are close to 0 if the respective paths are very close (similar) to each other

and close to 1 if the paths are very distant (dissimilar) to each other – in the

respective measure.

The distributions of the measures for an exemplary game can be found in

�gure 18 and a summary of the values in table 5. There can be made several

observations:

◦ For the distance measures, the distributions of the normalized, the unnor-

malized, and the scaled measure are completely the same – except for the

scale. This is not surprising, since these two measures are normalized by

the diameter of the graph, therefore, for each pair of paths, the value of

the distance measure is divided by the same number. As expected, scaling

by the above formula does not change the distribution.
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◦ It is remarkable that the distributions for the two distance measures look

so di�erent: while the distribution for the simple average distance is al-

most symmetric, the distribution for the matched average distance is much

skewed to the left. It is surprising that the matched average distance – al-

though it is supposed to yield a better matching of the path nodes – takes

smaller values for the majority of the pairs of paths than the simple aver-

age distance. Almost all pairs of paths have a matched average distance

value smaller than 5 while approximately half of the pairs of paths have

a simple average distance value larger than 5 (both in the unnormalized

case).

◦ The distributions for the similarity measures look di�erent. Not surpris-

ingly, for each of the similarity measures, the distributions for the normal-

ized measure and the inverted measure are the same, but mirrored, which

is due to their computation. The same holds for the distributions for the

unnormalized measure and the scaled and inverted measure, except that

for these cases, the scales are di�erent. But since the scaled and inverted

measure is computed by scaling the unnormalized measure to the interval

[0, 1] and inverting it, this is consistent with the shown distributions.

◦ The fact that for the similarity measures the distributions of the normal-

ized and inverted measure are di�erent to the distributions of the unnor-

malized measure and the scaled and inverted measure is due to the fact the

normalization is done by a value which is speci�c for each pair of paths.

This explains the di�erences in the distributions.

◦ Although the LCSS similarity is also normalized by a path pair speci�c

values, namely the length of the longer path, we do not get a change in

the distribution here – only the scale changes.

◦ It is remarkable that the node set similarity and the LCSS similarity show

similar characteristics, contrarily to the edge set similarity.

These matrices are the input for an hierarchical clustering algorithm with com-

plete and average linkage. For each game and each obtained matrix, the algo-

rithm (see section 4.3 for information about used algorithms) builds a dendro-

gram representing the clusters in di�erent stages of the algorithm and which

could then be cut at a certain height in order to obtain the desired number of

clusters. In future work, it could be a worthwhile approach to consider other

clustering and classi�cation approaches.

4.4.2 Evaluation of the clustering results

The computed dendrograms of the clustering algorithm with complete linkage

can be found in �gure 19 and 20, the respective dendrograms of the algorithm

using average linkage can be found in the appendix. As a �rst observation, it

can be seen that there is almost no di�erence whether the normalized or the

unnormalized distance measure is taken as input for the algorithm, the resulting

dendrograms are almost the same. Though, visualizing the clustering results as

dendrograms might be not the right choice to get any insight of the path data,

since the number of paths is too large. Thus, merely looking at the dendrograms

as they are, will not bring any further knowledge.
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(d) Edge set similarity

unnormalized normalized

inverted scaledAndInverted

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0

20000

40000

60000

0 10 20 30 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
value

co
un

t

Distribution of the LCSS for Game 779
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Figure 18: The distribution of the values of the computed similarity and distance values

for the game 779. For the distance measures, the �gure contains the distribution for

the unnormalized distance measure, the normalized distance measure, and the distance

measure scaled to [0, 1] by the described transformation. For the similarity measures, the

�gures contain the unnormalized similarity measure, the normalized similarity measure,

the inverted normalized similarity measure, and the inverted and scaled unnormalized

similarity measure (see section 4.4.1 for the details).
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measure min max mean median sd

Node set similarity

unnormalized 1 36 10.21 10 4.36

normalized 0.01 1 0.21 0.2 0.11

inverted 0 0.99 0.79 0.8 0.11

scaled and inverted 0 1 0.74 0.74 0.12

Edge set similarity

unnormalized 0 35 6.76 6 4.48

normalized 0 1 0.12 0.1 0.09

inverted 0 1 0.88 0.9 0.09

scaled and inverted 0 1 0.81 0.83 0.13

LCSS similarity

unnormalized 1 36 9.7 9 4.61

normalized 0.03 1 0.27 0.25 0.13

inverted 0 0.97 0.73 0.75 0.13

scaled and inverted 0 1 0.75 0.77 0.13

Simple average distance

unnormalized 0 14.81 5.72 5.36 2.31

normalized 0 0.44 0.17 0.16 0.07

scaled 0 1 0.39 0.36 0.16

Matched average distance

unnormalized 0 12.61 1.84 1.44 1.39

normalized 0 0.37 0.05 0.04 0.04

scaled 0 1 0.15 0.11 0.11

Table 5: A summary of the similarity and distance measure values for the available (cut)

paths of game 779.
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Figure 19: The dendrograms visualizing the hierarchical clustering results using com-

plete linkage for the game 779 and each of the path distance measures.
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Figure 20: The dendrograms visualizing the hierarchical clustering results using com-

plete linkage for the game 779 and each of the path similarity measures.
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In general, evaluating the clustering results is not an easy task at all, especially

for the following reasons:

◦ The main point of clustering the path is an evaluation of the proposed

similarity and distance measures for paths – and not an evaluation of the

clustering method. How can it be di�erentiated between these two in an

evaluation?

◦ The main problem for an evaluation of the measures and the clustering is

the fact that there is no ground truth available for the given data or any

available path data. This is due to the fact that there does not exist any

work that is concerned with the clustering of paths in graphs. In future

work, it will be a necessary task to generate a ground truth for path data

which can then be used to do an extensive evaluation of the clustering

results. In order to do so, it will be unavoidable to develop an appropriate

and meaningful visualization of clustered paths in a graph which can then

serve for a �rst visual inspection of the clustering results.

◦ Paths have several properties by which the clustering algorithm might be

supposed to divide the paths into several groups. It might be that the same

similarity measures shows totally di�erent performances when consider-

ing di�erent properties of the paths as criterion for evaluating the similar-

ity measure. This, however, is an expected and desired behavior, otherwise,

it would not be necessary to consider di�erent similarity measures if they

all capture the same aspect of the paths. So, evaluation of the measures

and the clustering results needs to carefully consider which property the

measure is intended to capture in order to evaluate this aspect.

Since developing an evaluation scheme which considers all the above men-

tioned concerns about evaluation of the clustering results, goes beyond the scope

of this work, we propose a simple approach for evaluation which is based on the

purity of clusters. Let Q = {q : PV → {0, 1}} be a set of binary properties

which a path p ∈ PV can either ful�ll, i.e. q(p) = 1, or not ful�ll, i.e. q(p) = 0,

for a quality q ∈ Q. We call a cluster pure regarding q if q has the same value for

each path in the cluster, formally, a cluster of paths C = {p1, . . . , pl} ⊆ PV is

called pure regarding q ∈ Q if either ∑l
i=1 q(pi) = 0 or ∑l

i=1 q(pi) = l holds.

Furthermore, we de�ne the purity of a cluster C regarding q as

purityq(C) =
1
l

max

{
l

∑
i=1

q(pi), l −
l

∑
i=1

q(pi)

}
.

We now consider the purity of the clusters in the di�erent stages of the hier-

archical clustering process. Having the dendrogram which represents the hier-

archical clustering process, an arbitrary number of clusters between 1 (all paths

are in the same cluster) and n, with n the number of available paths (each path

is in its own cluster of size 1), can be chosen. We consider now the purity of

the clusters with increasing cluster number regarding certain path properties.

The qualities that we take into account are (i) whether the path is solving or

not, (ii) whether it is simple and elementary, (iii) whether it is simple, but not

elementary, and (iv) whether it is not elementary and not simple.

For each similarity measure and distance measure, each game and each of

the proposed qualities, we consider the process of hierarchical processing in the
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Figure 21: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the simple average

distance. The dashed lines indicate the fraction of the paths which satisfy the respec-

tive quality relative to the total number of paths. For each plot, the colors encode the

evaluated quality: red – solved; green – elementary and simple; blue – simple and not

elementary; purple – not simple and not elementary.
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Figure 22: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the matched average

distance. The dashed lines indicate the fraction of the paths which satisfy the respec-

tive quality relative to the total number of paths. For each plot, the colors encode the

evaluated quality: red – solved; green – elementary and simple; blue – simple and not

elementary; purple – not simple and not elementary.
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Figure 23: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the node set similarity.

The dashed lines indicate the fraction of the paths which satisfy the respective quality

relative to the total number of paths. For each plot, the colors encode the evaluated qual-

ity: red – solved; green – elementary and simple; blue – simple and not elementary;

purple – not simple and not elementary.
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Figure 24: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the edge set similarity.

The dashed lines indicate the fraction of the paths which satisfy the respective quality

relative to the total number of paths. For each plot, the colors encode the evaluated qual-

ity: red – solved; green – elementary and simple; blue – simple and not elementary;

purple – not simple and not elementary.
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Figure 25: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities for the LCSS similarity.

The dashed lines indicate the fraction of the paths which satisfy the respective qual-

ity relative to the total number of paths. For each plot, the colors encode the evaluated

quality: red – solved; green – elementary and simple; blue – simple and not elementary;

purple – not simple and not elementary.
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sense that the number of clusters is increased in each step – the height on which

the dendrogram is cut in order to obtain the clusters is lowered with each step.

In the �rst step, the dendrogram is cut at a height such that there is only one

cluster which contains all paths, in the second step such that there are exactly

two clusters, and so forth. It is clear that in the �rst step, all existing clusters

are not pure – assuming that there is no trivial quality, i.e. a quality in which all

considered paths have the same value. In the last step, all clusters are pure since

each cluster contains exactly one path. The question is then if there is a similarity

or distance measure which is – in combination with the hierarchical clustering

algorithm – able to preserve a high number of pure clusters with decreasing

number of clusters, or which is able to achieve a high number of pure clusters

with a small number of clusters. This relationship for one exemplary game is

depicted in the left columns of �gure 21, 22, 23, 24 and 25 for each of the similarity

and distance measures. The increasing number of clusters in each step is plotted

on the horizontal axis, the fraction of pure clusters to the total number of clusters

is plotted on the vertical axis. It can be observed that – as expected – the number

of pure clusters increases with increasing number of clusters, for each measure

and for each quality, though not monotonically. Furthermore, all measures have

in common that the number of pure clusters regarding the quality of being simple

and elementary increases considerably faster with increasing number of clusters

than all other qualities. Especially for the simple average distance, for both the

normalized and unnormalized version, the number of pure clusters rises steeply

until a percentage of 75 % is reached with 50 clusters, before the curve �attens.

For the remaining measures, the value of 75 % is reached considerably later, but

the rate of growth for this quality is qualitatively the same for all measures. Yet,

needing approximately 50 clusters for 635 paths in order to get 75 % pure clusters

is still not a satisfying result.

Interestingly, although the quality of being solved is correlated with neither

the quality of being simple or elementary (cf. section 4.2), the curves of the num-

ber of pure clusters show a similar behavior for these qualities for almost all

measures. For all measures except the unnormalized matched average distance,

the remaining three qualities are almost identical with regard to the number of

pure clusters and show an approximately linear growth. Only for the unnormal-

ized matched average distance, the number of pure clusters regarding the quality

of being solved grows faster than regarding the other two qualities. Therefore,

it might be a worthwhile approach to analyze this measure more closely and

to build a more sophisticated classi�er based on the matched average distance

in order to distinguish between solved and not solved paths by comparing the

existing paths.

Additionally, it is remarkable that a perfect clustering, i.e. a value of almost

100 % of pure clusters, is not reached until the maximum number of possible

clusters.

However, the evaluation measure of the number of pure clusters is a very

strict one: independent of the size of the cluster, as soon as only one “wrong”

path is added to the cluster, the cluster is not pure anymore. For a large num-

ber of path, it might not be appropriate to give such a high weight to a single

path. It might be more desirable to allow some �exibility and allow a certain
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rate of misclassi�ed paths in a cluster. For this reason, we consider the average

purity of the clusters in the process of the hierarchical clusters. For each mea-

sure, each game and each quality, we consider the mean purity of the clusters

with increasing number of clusters. This relationship can be found in the right

column of the �gures 21, 22, 23, 24 and 25: the horizontal axis again contains

the number of clusters, on the vertical axis, the average purity of the existing

clusters (as de�ned above) is plotted. The dashed lines indicate how many of

the available paths satisfy the respective quality, i.e. for a quality q and all avail-

able paths P = {p1, . . . , pk} ⊆ PV , the dashed line is plotted at the value

vq = max
{

∑k
i=0 q(pi), ∑k

i=0 1− q(pi)
}

. It follows from the de�nition that the

mean purity of the clusters is always greater or equal 50 %. Furthermore, it is

obvious that for any nontrivial quality, the mean purity is vq if there is only one

cluster which contains all paths, and is 1 if there is exactly one cluster for each

path.

It can be observed that these �gures are consistent with the plots in the left

columns: For all similarity measures, the mean purity is highest for the quality

of being elementary and simple. Though, this can be explained by the fact that

there are only very few paths which are elementary and simple, more than 90 %

of the paths are either not simple or not elementary. The remaining qualities are

rather equally distributed over the paths, i.e. the fraction of paths which ful�ll

(or do not ful�ll) the other three qualities is between 50 % and 65 %. The clusters’

mean purity regarding the quality of being simple and elementary grows the

least fast for increasing number of clusters, there is actually a range in each of

the �gures in which the mean purity regarding this quality is nearly constant.

Furthermore, for the unnormalized and normalized matched average distance as

well as for the normalized edge set similarity (and – to a lesser extent – for the

unnormalized node set similarity), it can be observed that the mean purity of the

clusters regarding the quality of being simple and elementary drops in the very

beginning, even drops below the dashed line and does not exceed this value for

the next steps. In the case of the unnormalized matched average distance, the

mean purity does not exceed the respective value until the number of clusters is

greater than 100.

As in the left column of the �gures, the mean purity regarding the qualities

of being solved, of being neither simple nor elementary, and of being simple and

not elementary, shows a very similar behavior for all similarity and distance mea-

sures – except for the unnormalized matched average distance. For this distance

measure, the mean purity regarding the quality of being solved increases steeply

in the very �rst steps and exceeds the value of 80 % mean cluster purity with

less than 20 di�erent clusters. This mean purity regarding the quality of being

solved is not reached by the other measures with a number of clusters smaller

than 100 to 200. For the remaining measures, the mean purity regarding these

three qualities grows nearly in the same way and also – as in the left column –

approximately linearly.

Additionally, it can be noticed that except for the described initial drops of

the mean purity regarding the quality of being simple and elementary in the

mentioned four measures, the mean purity for each measure and for each quality
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Figure 26: An aggregation of the mean cluster purity regarding the quality whether the

paths is solving or non-solving, for each of the proposed similarity and distance mea-

sures for the example game 779. The dashed line indicates the fraction of paths which

are solving in relation to the total number of paths.

increases with increasing number of clusters and is always considerably above

the value vq for the respective quality.

The most interesting quality for which the clusters should be as pure as pos-

sible is certainly the quality whether the path is solving or non-solving. In or-

der to compare the di�erent similarity and distance measures and to compare

the purity of the clusters regarding this quality which are computed based on

the measures, �gure 26 contains an aggregation of the clusters’ mean purity for

all distance and similarity measures. The di�erent curves represent the clusters’

mean purity with increasing cluster number, one curve for each similarity and

distance measure. The dashed line is again the value vq for the quality of inter-

est q. It can be observed that most of the measures show a similar behavior for

the clusters’ purity with an increasing number of clusters, however, the unnor-

malized matched average distance is the only measure which is able to produce

clusters with a mean purity of 80 % with only a few clusters. But nevertheless,

also the other measures yield clusters which have a considerably higher purity

than they would have by chance.
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S U M M A R Y

5.1 summary of the work

This section gives to give a brief summary of the present work before the next

section will give an outlook for possible future work.

To the best of our knowledge, the present work is the �rst approach which is

concerned with the similarity of paths in graphs. Although there is published re-

search about similarity of trajectories in a Euclidean space or of time series, there

does not exist any approach which systematically analyses similarity measures

of paths.

The present work aims at giving a starting point for the research in the area

of path similarity in graphs. For this reason, it is structured in two main parts.

The �rst part provides theoretical foundations for the second part in which the

measures developed in the �rst part, are applied to real-world data and evalu-

ated. The theoretical part follows an axiomatic approach by starting with the

proposal of possible properties a similarity or distance measure for paths could

have. Some of these properties are well-known properties of generic distance

metrics, for example coincidence, symmetry, or the triangle inequality. We addi-

tionally introduce four properties which are speci�cally developed for distance

and similarity measures of paths in graphs. Having identi�ed possible properties

of measures, we identify possible features of paths which could be captured in

distance and similarity measures or on which the respective measure can build

on. There are at least three principles by which a similarity or distance measure

can be developed: considering the elements of the paths, considering the order

of the elements of the paths, or considering the position of the elements of the

paths in the underlying graph. These principles might also be combined in order

to get an appropriate similarity or distance measure. In any case, it needs to be

emphasized that the meaning of the considered paths must not neglected in the

choice of principle for the similarity or distance measure.

Based on the three main principles, we propose similarity and distance mea-

sures for paths and an reasonable possible normalization for each of the mea-

sures. Five distance and similarity measure are selected and analyzed for their

properties: the node set similarity, the edge set similarity, the LCSS similarity,

the simple average distance, and the matched average distance are each checked

which of the proposed properties they satisfy, each measure in the normalized

and the unnormalized variant. Table 2 shows an overview of the results of the

analysis. For some combinations of measure and property, it is not shown yet

whether the measure satis�es the properties, which is marked with a question
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mark in the table. For all other combinations, we give the proofs that the mea-

sure satis�es the property or provide a counterexample in which the measure

does not satisfy the respective property.

The second part of the present work applies the developed similarity and dis-

tance measures on paths from real-world data and presents a simple preliminary

approach to cluster the available paths according to their computed similarity.

For this reason, we processed the log data of students playing a board game and

extracted the students’ path through the problem space of the game which repre-

sent the students’ solution for the game. In order to get an overview of the avail-

able path data, we present several di�erent possibilities to visualize the paths

and explore their properties. For each pair of paths of one game, we computed

the similarity or distance value for the several proposed measures. Based on the

similarity or distance of the available path, we used an hierarchical clustering

approach to partition the paths into groups of similar paths. Since there is no

ground truth available which paths should be in the same cluster or which paths

are similar to each other – because this concept does not exist yet, but is to be

developed in this work –, it is a di�cult task to evaluate the results of the clus-

tering algorithm. We approach this problem by developing the concept of cluster

purity regarding several qualities and evaluate the similarity and distance mea-

sures by observing the (mean) cluster purity during the process of hierarchical

clustering.

Regarding this evaluation measure, the similarity and distance measures show

on this data a similar behavior – except for the matched average distance which

seems to be more appropriate than the others to distinguish between solved and

not solved paths. However, there is hardly a de�nite statement possible without

a proper evaluation measure for the similarity measures. This and other issues

which are still left open, are discussed in the next section.

5.2 future work

Since the present work is meant as a starting point for future research in the area

of path similarity, there are several directions into which further work can lead

and various ideas which can be pursued in the near and in the distant future. We

will give a short collection of concrete and visionary ideas for future work:

◦ Section 3.4 in which the proposed similarity and distance measures are

analyzed for their properties, is left with a few gaps: for some combinations

of measure and property, it is not proven yet whether the measure satis�es

the property. Table 2 provides the information for which combination the

proof is missing. These combinations need to be checked in future work.

◦ Section 3.3 proposes more similarity and distance measures than were used

in this work. There are also formulated several ideas for measures which

are not elaborated further. It might be worth to spend time on develop-

ing and evaluating the remaining ideas for similarity and distance mea-

sures. For example, we proposed an edit distance for paths which allows

the transformation operations of inserting, deleting and substituting nodes

in the path. It should be revised whether these are the most appropriate

edit operations on paths, or whether other operations re�ect better the pro-
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cess of path evaluation. Furthermore, it is an interesting question to which

extent the structure of the underlying needs to be taken into account when

transforming a path into another and which constraints should be posed

on the intermediate stages of the transformation. Another example for a

similarity measure which needs further development is the tuple similar-

ity proposed in section 3.3.3, since it is not clear whether it captures the

desired properties of paths.

◦ Besides the systematic analysis of the available measures for their prop-

erties, it might be useful to provide an extensive examination of the

measures’ computational complexity and appropriate approximation algo-

rithms, if needed.

◦ In section 3.1, we proposed a set of properties a similarity or distance mea-

sure for paths might satisfy. However, neither of these properties consid-

ers changes of the underlying graph although it is in reality not an un-

usual phenomenon that nodes or edges are added or removed in the graph.

Therefore, it is an interesting question to be considered in future work,

which changes of the underlying graph should a�ect the similarity of two

existing paths and which changes of the graph should leave the value of

the similarity for the two paths una�ected. Certainly, the similarity mea-

sure value should change if the graph changes involves any nodes or paths

of one of the paths. But in what extent should changes of the graph have

an e�ect on the similarity of paths not directly involved? For example,

adding or removing edges in the underlying might considerably change

the length of the shortest path between nodes contained in the paths. It

could make sense that such a changes has an in�uence on the similarity

value of the paths. Therefore, future work can aim at answering the ques-

tion when modi�cations of the graph should a�ect similarity measure val-

ues and when they should not a�ect the measure value, as well as whether

such a general distinction is possible at all.

◦ In section 3.4, it is shown that neither of the proposed measures satis�es all

proposed properties. It is an open question whether there exists a measure

which can satisfy all properties, at all. If there is one (or several), it would

be interesting to �nd this measure and analyze it for its further properties.

In the other case, it would be an achievement to prove that there does not

exist such a measure.

◦ In section 3.3.4, the idea of parametrized similarity and distance measures

is proposed, i.e. an extension of the measures which allows to adjust the

�exibility of the measures regarding certain features. Taking the node set

similarity as an example, it might be reasonable to increase the �exibility

when two nodes count as identical and contribute to the intersection of

the paths’ node sets. One could imagine that nodes of the two paths are

considered as the same (in the sense that they contribute to the node set

intersection) if their connection in the graph is shorter than the respec-

tive parameter. Also for other similarity and distance measures, it could

be enhancing to introduce parameters.

◦ A rather technical than creative task which should be done in future re-

search is to adapt the existing measures and properties to directed and
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weighted graphs, since all measures and properties were restricted to sim-

ple, undirected and unweighted graphs. It needs to be considered how the

extension to a more general graph class will change the meaning of paths,

of path similarity, and how this can be transfered to the respective mea-

sures.

◦ Having a variety of di�erent similarity and distance measures and an anal-

ysis of their properties at hand, it would be interesting to develop a kind

of guideline in which settings which similarity or distance measure should

be used: which assumptions are hidden in the measures, which prerequi-

sites need to be ful�lled in order to apply a measure, which meaning does

a path in the situation of interest have, and which measure is then appro-

priate? In the ideal case, we can develop a general scheme which can then

be followed in order to �nd an appropriate measure.

◦ Section 4, we present a �rst approach of clustering paths by their similar-

ity. There are a lot of approaches by which this work can be continued.

Though the most important aspect which should be considered is the lack-

ing ground truth for path clusters. Generating an appropriate ground truth

should have a high priority in future work, in order to allow an adequate

evaluation of the measures and the clustering results. It needs to be inves-

tigated whether a ground truth for each data set needs to be generated

manually or whether there is a general approach to achieve this. Other-

wise (or rather: additionally), further methods for a proper evaluation of

the measures are needed.

◦ In order to develop evaluation methods or a ground truth for the paths, it

might be helpful to have tools at hand which allow a meaningful visualiza-

tion of the available paths. Section 4.2 proposes a few methods to explore

the available path data, though, speaking of paths in graphs, a visualization

of the paths in the graph could be useful. It will be certainly a challenge

to handle a huge amount of paths embedded in graphs of considerable

size, and to �nd a meaningful and useful visualization. Hopefully, a visu-

alization might allow a �rst visual inspection of found path clusters and

therefore a fast preliminary evaluation of clustering results.

◦ As soon as an appropriate evaluation of the measures and the clustering

results is available, it will be exciting to extend the present approach on

further data sets as well as by di�erent clustering methods. In the present

work, only one data set containing paths in a game’s state space were used,

however, paths occur in almost all application areas in which a graph rep-

resentation is reasonable. Thus, validating the method on further data sets

from di�erent application areas (and in which paths have di�erent mean-

ings) will yield interesting results. Additionally, in the present work, only a

simple hierarchical clustering approach was used. It might be a worthwhile

approach to try other existing clustering and classi�cation approaches, for

example k-means-clustering or a support vector machine. Depending on

the available ground truth or the respective path properties the algorithm

is supposed to divide the paths into groups, it might be possible that an-

other algorithm is more appropriate than an hierarchical clustering.
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◦ For certain application scenarios, given a cluster of paths, it might be de-

sirable to deduce a representative or average path from this group which

then can be taken as a typical path for the group. It in not obvious at all

how such an average path can be constructed from a given set of paths

such that it has all properties characteristic for this group. It is possible

that the constructed average path is a member of the given set, but also

that is arti�cially constructed and not element of the given set.
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Figure 27: The dendrograms visualizing the hierarchical clustering results using average

linkage for the game 779 and each of the path distance measures
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(f) Unnormalized LCSS similarity.

Figure 28: The dendrograms visualizing the hierarchical clustering results using average

linkage for the game 779 and each of the path similarity measures
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(a) Normalized simple average distance.
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(b) Normalized simple average distance.
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(c) Unnormalized simple average distance.
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(d) Unnormalized simple average distance.

Figure 29: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the simple average

distance for the clusters computed with average linkage. The dashed lines indicate the

fraction of the paths which satisfy the respective quality relative to the total number

of paths. For each plot, the colors encode the evaluated quality: red – solved; green –

elementary and simple; blue – simple and not elementary; purple – not simple and not

elementary.
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(a) Normalized matched average distance.
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(b) Normalized matched average distance.
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(c) Unnormalized matched average distance.
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(d) Unnormalized matched average distance.

Figure 30: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the matched average

distance for the clusters computed with average linkage. The dashed lines indicate the

fraction of the paths which satisfy the respective quality relative to the total number

of paths. For each plot, the colors encode the evaluated quality: red – solved; green –

elementary and simple; blue – simple and not elementary; purple – not simple and not

elementary.
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(a) Normalized node set similarity.
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(b) Normalized node set similarity.
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(c) Unnormalized node set similarity.
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(d) Unnormalized node set similarity.

Figure 31: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the node set similarity

for the clusters computed with average linkage. The dashed lines indicate the fraction of

the paths which satisfy the respective quality relative to the total number of paths. For

each plot, the colors encode the evaluated quality: red – solved; green – elementary and

simple; blue – simple and not elementary; purple – not simple and not elementary.
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(a) Normalized edge set similarity.
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(b) Normalized edge set similarity.
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(c) Unnormalized edge set similarity.
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(d) Unnormalized edge set similarity.

Figure 32: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the edge set similarity

for the clusters computed with average linkage. The dashed lines indicate the fraction of

the paths which satisfy the respective quality relative to the total number of paths. For

each plot, the colors encode the evaluated quality: red – solved; green – elementary and

simple; blue – simple and not elementary; purple – not simple and not elementary.
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(a) Normalized LCSS similarity.
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(b) Normalized LCSS similarity.
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(c) Unnormalized LCSS similarity.
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(d) Unnormalized LCSS similarity.

Figure 33: The number of pure clusters and the average purity of the clusters with in-

creasing number of clusters for each of the proposed qualities and the LCSS similarity

for the clusters computed with average linkage. The dashed lines indicate the fraction of

the paths which satisfy the respective quality relative to the total number of paths. For

each plot, the colors encode the evaluated quality: red – solved; green – elementary and

simple; blue – simple and not elementary; purple – not simple and not elementary.
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